On solutions of systems consisting both of word equationa and of word length inequalities
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 24-29

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that systems named in the title are undecidable. Moreover some undecidable set $M$ can be represented in the form $a\in M\Leftrightarrow\exists x_1\dots x_n P$ where $P$ is a system of the above mentioned form. However some recursive set cannot be represented in this form.
@article{ZNSL_1974_40_a4,
     author = {N. K. Kossovski},
     title = {On solutions of systems consisting both of word equationa and of word length inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {24--29},
     publisher = {mathdoc},
     volume = {40},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a4/}
}
TY  - JOUR
AU  - N. K. Kossovski
TI  - On solutions of systems consisting both of word equationa and of word length inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 24
EP  - 29
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a4/
LA  - ru
ID  - ZNSL_1974_40_a4
ER  - 
%0 Journal Article
%A N. K. Kossovski
%T On solutions of systems consisting both of word equationa and of word length inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 24-29
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a4/
%G ru
%F ZNSL_1974_40_a4
N. K. Kossovski. On solutions of systems consisting both of word equationa and of word length inequalities. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 24-29. http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a4/