Heytiag predicate calculus with $\varepsilon$-symbol
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 101-109

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the introduction of $\varepsilon$-symbol with $\varepsilon$-axioms $A[t]\to A[\varepsilon x A]$ leads to non-conservative extension. For example $\exists x(\rceil P_x\to\rceil Pb\\rceil Pa)$ becomes derivable. A conservative extension is obtained by treating $\varepsilon$-symbol like $\iota$-symbol: for every occurence $\varepsilon x A[x,\alpha_1\dots,\alpha_n]$ in a sequent from a deduction formula $\forall\alpha_1\dots\forall\alpha_n\exists x A$ should occur in the antecedent of this sequent. Cut-elimination is proved for the resulting system $HPC^{\varepsilon}$. It is pointed out that the proof could be extended to $HPC$ with decidable equality and to Heyting arithmetic with free function variables and the principle of choice: $$ \Gamma\to\forall x\exists y A;\quad\forall x A_y[f(x)],\quad\Gamma\to C\vdash\Gamma\to C. $$ The extension to Heyting arithmetic with bound variables of higher types and corresponding choice principle requires new ideas.
@article{ZNSL_1974_40_a11,
     author = {G. E. Mints},
     title = {Heytiag predicate calculus with $\varepsilon$-symbol},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--109},
     publisher = {mathdoc},
     volume = {40},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a11/}
}
TY  - JOUR
AU  - G. E. Mints
TI  - Heytiag predicate calculus with $\varepsilon$-symbol
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 101
EP  - 109
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a11/
LA  - ru
ID  - ZNSL_1974_40_a11
ER  - 
%0 Journal Article
%A G. E. Mints
%T Heytiag predicate calculus with $\varepsilon$-symbol
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 101-109
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a11/
%G ru
%F ZNSL_1974_40_a11
G. E. Mints. Heytiag predicate calculus with $\varepsilon$-symbol. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 101-109. http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a11/