The recognition of the self-crossing of plane trajectory by Kolmogorov algorithm
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 35-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $M$ be one head one 2-dimensional tape Turing machine with an input. Let input alphabet be $V=\{U,D,R,L\}$, tape alphabet be $\{{}\ast,\lambda\}$ ($\lambda$ being a blank symbol). Every symbol from $V$ corresponds to a direction on the tape: $U$ – up, $D$ – down, $R$ – right, $L$ – left. If $\alpha$, comes on the input of $M$ then the head moves in the direction $\alpha$ and if it observes the symbol $\lambda$ then it prints a $\ast$; observing the symbol $\ast$ $M$ stops with the output “there is a self-crossing”. We show that $M$ can be real-time simulated by a Kolmogorov algorithm.
			
            
            
            
          
        
      @article{ZNSL_1972_32_a5,
     author = {M. V. Kubinets},
     title = {The recognition of the self-crossing of plane trajectory by {Kolmogorov} algorithm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a5/}
}
                      
                      
                    M. V. Kubinets. The recognition of the self-crossing of plane trajectory by Kolmogorov algorithm. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 35-44. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a5/