Some properties of graphs of functions in the Grzegorczyk hierarchy
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 105-107
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma^n$ be the set of all primitive recursive functions whose graphs belong to $\varepsilon^n$ [I]. It is proved that $\Gamma^n$ is the closure of $\varepsilon^n$ relative to identification and permutation of variables, to substitution of constants and to special operations I)–4) on p.p. 105–106. In particular $f_n\in\Gamma^0$ for every $n\geq 3$. Here $f_n$ is a modification of Ackermana's function described in [I] p. 30.
@article{ZNSL_1972_32_a14,
author = {S. V. Pakhomov},
title = {Some properties of graphs of functions in the {Grzegorczyk} hierarchy},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--107},
publisher = {mathdoc},
volume = {32},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a14/}
}
S. V. Pakhomov. Some properties of graphs of functions in the Grzegorczyk hierarchy. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 105-107. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a14/