Some properties of graphs of functions in the Grzegorczyk hierarchy
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 105-107

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma^n$ be the set of all primitive recursive functions whose graphs belong to $\varepsilon^n$ [I]. It is proved that $\Gamma^n$ is the closure of $\varepsilon^n$ relative to identification and permutation of variables, to substitution of constants and to special operations I)–4) on p.p. 105–106. In particular $f_n\in\Gamma^0$ for every $n\geq 3$. Here $f_n$ is a modification of Ackermana's function described in [I] p. 30.
@article{ZNSL_1972_32_a14,
     author = {S. V. Pakhomov},
     title = {Some properties of graphs of functions in the {Grzegorczyk} hierarchy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--107},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a14/}
}
TY  - JOUR
AU  - S. V. Pakhomov
TI  - Some properties of graphs of functions in the Grzegorczyk hierarchy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1972
SP  - 105
EP  - 107
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a14/
LA  - ru
ID  - ZNSL_1972_32_a14
ER  - 
%0 Journal Article
%A S. V. Pakhomov
%T Some properties of graphs of functions in the Grzegorczyk hierarchy
%J Zapiski Nauchnykh Seminarov POMI
%D 1972
%P 105-107
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a14/
%G ru
%F ZNSL_1972_32_a14
S. V. Pakhomov. Some properties of graphs of functions in the Grzegorczyk hierarchy. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 105-107. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a14/