Cut-elimination theorem for relevant logics
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 90-97

Voir la notice de l'article provenant de la source Math-Net.Ru

Cut-elimination theorem is proved for $R^+$ that is the positive fragment of $R$ (cf. [4]) supplied with $S4$-modality and intensional conjunction. This gives a decision procedure for the $\{\rightarrow,\,0\}$ fragment of $R$. An extension of cut-elimination theorem to the positive part of Aekermann's calculus $E$ is only sketched. The formula $[(a\to u\vee v)\(a\to(u\to v))]\to(a\to v)$ proposed as a counterexample to the conjencture that the replacement of $A\to B$ by $N(A\to B)$ is an embedding of $E$ into $R^+$. Formula (4) is a counterexample to Anderson's conjencture: if $\rceil((A\to B)\to(C\to D))$ is provable in $E$ then $A\to B$ is too.
@article{ZNSL_1972_32_a12,
     author = {G. E. Mints},
     title = {Cut-elimination theorem for relevant logics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--97},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a12/}
}
TY  - JOUR
AU  - G. E. Mints
TI  - Cut-elimination theorem for relevant logics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1972
SP  - 90
EP  - 97
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a12/
LA  - ru
ID  - ZNSL_1972_32_a12
ER  - 
%0 Journal Article
%A G. E. Mints
%T Cut-elimination theorem for relevant logics
%J Zapiski Nauchnykh Seminarov POMI
%D 1972
%P 90-97
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a12/
%G ru
%F ZNSL_1972_32_a12
G. E. Mints. Cut-elimination theorem for relevant logics. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 90-97. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a12/