Quantifier-free and one-quantifier systems
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 115-133

Voir la notice de l'article provenant de la source Math-Net.Ru

There are considered formulas of classical first order arithmetic $Z$ with primitive recursive functions. The complexity of a formula is its quantifier-depth, that is the maximal number of changes of quantifiers governing each other. So the complexity of $\exists x_iR_i\vee\forall y_iS_$, $R_i,S_i$ being quantifier-free, is $0$. $Z_n$ is $n$-truncation of $Z$ (only formulas of complexity $\leq n$ are permitted in Sequenzen-deductions). It is proved that $Z_0$ is a conservative extension of PRA (primitive recursive arithmetic). The proof gives a characterization of primitive recursive functions. These are precisely function provably recursive in the arithmetical system constructed from free variable arithmetic of Kalmar-elementary function in the same way as $Z_0$ is constructed from PRA.
@article{ZNSL_1971_20_a11,
     author = {G. E. Mints},
     title = {Quantifier-free and one-quantifier systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--133},
     publisher = {mathdoc},
     volume = {20},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a11/}
}
TY  - JOUR
AU  - G. E. Mints
TI  - Quantifier-free and one-quantifier systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1971
SP  - 115
EP  - 133
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a11/
LA  - ru
ID  - ZNSL_1971_20_a11
ER  - 
%0 Journal Article
%A G. E. Mints
%T Quantifier-free and one-quantifier systems
%J Zapiski Nauchnykh Seminarov POMI
%D 1971
%P 115-133
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a11/
%G ru
%F ZNSL_1971_20_a11
G. E. Mints. Quantifier-free and one-quantifier systems. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 115-133. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a11/