A Discrete Projection Quasi Newton Method for Linearly Constrained Problems
Yugoslav journal of operations research, Tome 5 (1995) no. 2, p. 221 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we define a discrete quasi -Newton algorithm which uses only function values for finding an optimal solution to the problem $min \{ \phi(x) \| x \in X \}$, where X is a convex polytope. It is shown that using this algorithm one can reduce the initial problem to a finite number of subproblems of the type $min \{ \phi(x) \| x \in C \}$, where C is a linear manifold . It is also shown that each cluster point of the sequence gene rated by the algorithm is an optimal point of the considered optimization problem.
Keywords: Linear inequality-constrained minimization, Discrete quasi-Newton method, Projected gradient, Cholesky factortzation
@article{YJOR_1995_5_2_a4,
     author = {Nada I. {\DJ}uranovi\'c - Mili\v{c}i\'c},
     title = {A {Discrete} {Projection} {Quasi} {Newton} {Method} for {Linearly} {Constrained} {Problems}},
     journal = {Yugoslav journal of operations research},
     pages = {221 },
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_1995_5_2_a4/}
}
TY  - JOUR
AU  - Nada I. Đuranović - Miličić
TI  - A Discrete Projection Quasi Newton Method for Linearly Constrained Problems
JO  - Yugoslav journal of operations research
PY  - 1995
SP  - 221 
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_1995_5_2_a4/
LA  - en
ID  - YJOR_1995_5_2_a4
ER  - 
%0 Journal Article
%A Nada I. Đuranović - Miličić
%T A Discrete Projection Quasi Newton Method for Linearly Constrained Problems
%J Yugoslav journal of operations research
%D 1995
%P 221 
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_1995_5_2_a4/
%G en
%F YJOR_1995_5_2_a4
Nada I. Đuranović - Miličić. A Discrete Projection Quasi Newton Method for Linearly Constrained Problems. Yugoslav journal of operations research, Tome 5 (1995) no. 2, p. 221 . http://geodesic.mathdoc.fr/item/YJOR_1995_5_2_a4/