Using multivariate quantile function for peptide-protein docking
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 2, pp. 63-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents an exploration of using evolutionary optimization algorithms in protein-peptide docking. The main assumptions that reduce docking to the continuous global optimization problem are described. Some special features of the given problem and the difficulties of using evolutionary algorithms are discussed. The paper provides a way of using evolutionary optimization algorithms based on using empirical quantile function. The multivariate quantile function structure is defined recursively using univariate quantile transform. The grid-based approach of using quantile function is presented. The disadvantages of this approach are indicated. The deterministic sampling algorithm is proposed. The used scheme of parallel sampling and the resulting speed-up are described. The GPU-accelerated approach for quantile function evaluation is presented. This paper provides multiple GPU-based ways which use a sample in explicit form. Their speed-up depending on sample size is shown. The paper presents the results of docking using an evolutionary algorithm and its quantile-function-based modification. The comparison with the relevant docking method within a particular force-field is made. The results of the experiments are analyzed.
Keywords: global optimization, evolutionary algorithms, empirical quantile function, docking.
@article{VYURV_2019_8_2_a3,
     author = {S. V. Poluyan and N. M. Ershov},
     title = {Using multivariate quantile function for peptide-protein docking},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {63--75},
     year = {2019},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a3/}
}
TY  - JOUR
AU  - S. V. Poluyan
AU  - N. M. Ershov
TI  - Using multivariate quantile function for peptide-protein docking
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2019
SP  - 63
EP  - 75
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a3/
LA  - ru
ID  - VYURV_2019_8_2_a3
ER  - 
%0 Journal Article
%A S. V. Poluyan
%A N. M. Ershov
%T Using multivariate quantile function for peptide-protein docking
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2019
%P 63-75
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a3/
%G ru
%F VYURV_2019_8_2_a3
S. V. Poluyan; N. M. Ershov. Using multivariate quantile function for peptide-protein docking. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 2, pp. 63-75. http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a3/

[1] R. Rentzsch, B. Y. Renard, “Docking Small Peptides Remains a Great Challenge: An Assessment Using AutoDock Vina”, Briefings in Bioinformatics, 16:6 (2015), 1045–1056 | DOI

[2] B. Raveh, N. London, et al., “Rosetta FlexPepDock ab-initio: Simultaneous Folding, Docking and Refinement of Peptides onto Their Receptors”, PLoS ONE, 6:4 (2011) | DOI

[3] E. Lopez-Camacho, M. J. Garcia Godoy, et al., “Solving Molecular Flexible Docking Problems with Metaheuristics: A Comparative Study”, Applied Soft Computing, 2015 | DOI

[4] R. F. Alford, A. Leaver-Fay, R. Jeliazkov, et al., The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design, 2017 | DOI

[5] S. V. Poluyan, N. M. Ershov, “Parallel Evolutionary Algorithms for Solving Optimization Problems in Structural Bioinformatics”, Bulletin of the Ufa State Aviation Technical University, 21:4(78) (2017), 143–152

[6] S. Poluyan, N. Ershov, “Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking”, EPJ Web of Conferences, 173 (2018), 06010–06010 | DOI

[7] M. S. Sellers, M. M. Hurley, “XPairIt Docking Protocol for Peptide Docking and Analysis”, Molecular Simulation, 42 (2015), 149–161 | DOI

[8] G. L. O’Brien, “The Comparison Method for Stochastic Processes”, The Annals of Probability, 3:1 (1975), 80–88 | DOI

[9] J. H. J. Einmahl, D. M. Mason, “Generalized Quantile Processes”, The Annals of Statistics, 20:2 (1992), 1062–1078 | DOI

[10] V. Vučković, B. Arizanović, B. l. Le, “Generalized N-way Iterative Scanline Fill Algorithm for Real-Time Applications”, Journal of Real-Time Image Processing, 2017, 11554–017 | DOI

[11] Heterogeneous Platform HybriLIT } {\tt http://hlit.jinr.ru/en/

[12] J. Zhang, A. Sanderson, “JADE: Adaptive Differential Evolution with Optional External Archive”, IEEE Transactions on Evolutionary Computation, 13:5 (2009), 945–958 | DOI

[13] GitHub repositories } {\tt https://github.com/poluyan