Molecular dynamics in the force field FF14SB in water TIP4P-Ew, and in the force field FF15IPQ in water SPC/E$_b$: a comparative analysis on GPU and CPU
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 1, pp. 71-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A comparative analysis of computational efficiency and scalability of molecular dynamics (MD) implemented in the AMBER package was carried out on real biological systems using the classical force field FF14SB with the 4-site water model TIP4P-Ew, as well as the new promising force field FF15IPQ with the 3-site water model SPC/E$_b$. The Intel Xeon E5-2697 v3 processors, as well as GPU accelerators Tesla K40 (Kepler architecture) and P100 (Pascal) were used. Reduction of the number of atoms in a cell by 25–31 % as a result of implementing a 3 site solvent model speeds up the MD calculations by up to 63 % and decreases scalability by about 11 %. The obtained results can be qualitatively different, what indicates the need for joint use of different force fields at studying biological systems. The use of GPU-accelerators as an alternative to classical CPUs provides an oppor tunity to significantly increase the length on MD trajectories in the daily laboratory practice.
Keywords: classical molecular dynamics, AMBER, force fields FF14SB and FF15IPQ, water models TIP4P-Ew, TIP3P и SPC/E$_b$, GPU-accelerators Kepler and Pascal.
@article{VYURV_2019_8_1_a4,
     author = {D. A. Suplatov and Ya. A. Sharapova and N. N. Popova and K. E. Kopylov and Vl. V. Voevodin and V. K. \v{S}vedas},
     title = {Molecular dynamics in the force field {FF14SB} in water {TIP4P-Ew,} and in the force field {FF15IPQ} in water {SPC/E}$_b$: a comparative analysis on {GPU} and {CPU}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {71--88},
     year = {2019},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/}
}
TY  - JOUR
AU  - D. A. Suplatov
AU  - Ya. A. Sharapova
AU  - N. N. Popova
AU  - K. E. Kopylov
AU  - Vl. V. Voevodin
AU  - V. K. Švedas
TI  - Molecular dynamics in the force field FF14SB in water TIP4P-Ew, and in the force field FF15IPQ in water SPC/E$_b$: a comparative analysis on GPU and CPU
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2019
SP  - 71
EP  - 88
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/
LA  - ru
ID  - VYURV_2019_8_1_a4
ER  - 
%0 Journal Article
%A D. A. Suplatov
%A Ya. A. Sharapova
%A N. N. Popova
%A K. E. Kopylov
%A Vl. V. Voevodin
%A V. K. Švedas
%T Molecular dynamics in the force field FF14SB in water TIP4P-Ew, and in the force field FF15IPQ in water SPC/E$_b$: a comparative analysis on GPU and CPU
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2019
%P 71-88
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/
%G ru
%F VYURV_2019_8_1_a4
D. A. Suplatov; Ya. A. Sharapova; N. N. Popova; K. E. Kopylov; Vl. V. Voevodin; V. K. Švedas. Molecular dynamics in the force field FF14SB in water TIP4P-Ew, and in the force field FF15IPQ in water SPC/E$_b$: a comparative analysis on GPU and CPU. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/

[1] D. A. Suplatov, N. N. Popova, K. E. Kopylov, M. V. Shegay, Vl. V. Voevodin, V. K. Švedas, “Hybrid Computing Clusters to Study Protein Structure, Function and Regulation”, Bulletin of South Ural State University. Series: Mathematical Modeling, Programming Computer Software, 6:4 (2017), 74–90 | DOI

[2] R. C. Godwin, R. Melvin, F. R. Salsbury, “Molecular Dynamics Simulations and ComputerAided Drug Discovery”, Computer-Aided Drug Discovery, 2016, 1–31 | DOI

[3] D. E. Shaw, et al., “Anton, a Special-Purpose Machine for Molecular Dynamics Simulation”, Communications of the ACM, 51:7 (2008), 91–97 | DOI

[4] D. E. Shaw, et al., “Anton 2: Raising the Bar for Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer”, International Conference for High Performance Computing, Networking, Storage and Analysis (SC '14): Proceedings of the International Conference (New Orleans, LA, USA, November 16–21, 2014), IEEE Press, 2014, 41–53 | DOI

[5] M. S. Nobile, et al., “Graphics Processing Units in Bioinformatics, Computational Biology and Systems Biology”, Briefings in Bioinformatics, 18:5 (2016), 870–885 | DOI

[6] R. Salomon-Ferrer, et al., “Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald”, Journal of Chemical Theory and Computation, 9:9 (2013), 3878–3888 | DOI

[7] A. W. Gotz, et al., “Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born”, Journal of Chemical Theory and Computation, 8:5 (2012), 1542–1555 | DOI

[8] Dokumentatsiya k programmnomu obespecheniyu GROMACS } {\tt http://manual.gromacs.org/documentation/2018/user-guide/force-fields.html

[9] J. A. Maier, et al., “FF14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from FF99SB”, Journal of Chemical Theory and Computation, 11:8 (2015), 3696–3713 | DOI

[10] Dokumentatsiya k programmnomu obespecheniyu AMBER, P. 33 } {\tt http://ambermd.org/doc12/Amber17.pdf

[11] K. T. Debiec, et al., “Further Along the Road Less Traveled: AMBER FF15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model”, Journal of Chemical Theory and Computation, 12:8 (2016), 3926–3947 | DOI

[12] A. Onufriev, “Implicit Solvent Models in Molecular Dynamics Simulations: A Brief Overview”, Annual Reports in Computational Chemistry, 4 (2008), 125–137 | DOI

[13] V. Wong, D. A. Case, “Evaluating Rotational Diffusion From Protein MD Simulations”, The Journal of Physical Chemistry B, 112:19 (2008), 6013–6024 | DOI

[14] H. W. Horn, et al., “Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew”, The Journal of Chemical Physics, 120:20 (2004), 9665–9678 | DOI

[15] K. Takemura, A. Kitao, “Water Model Tuning for Improved Reproduction of Rotational Diffusion and NMR Spectral Density”, The Journal of Physical Chemistry B, 116:22 (2012), 6279–6287 | DOI

[16] L. Pierce, et al., “Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics”, Journal of Chemical Theory and Computation, 8:9 (2012), 2997–3002 | DOI

[17] D. Suplatov, K. Kopylov, Y. Sharapova, V. Švedas, “Human p38a Mitogen-Activated Protein Kinase in the Asp168-Phe169-Gly170-in (DFG-in) State Can Bind Allosteric Inhibitor Doramapimod”, Journal of Biomolecular Structure and Dynamics, 2018 | DOI

[18] Y. Sharapova, D. Suplatov, V. Švedas, “Neuraminidase A from Streptococcus Pneumoniae Has a Modular Organization of Catalytic and Lectin Domains Separated by a Flexible Linker”, The FEBS Journal, 285:13 (2018), 2428–2445 | DOI

[19] A. K. Crooke, et al., “CcpA-Independent Glucose Regulation of Lactate Dehydrogenase 1 in Staphylococcus Aureus”, PLoS One, 8:1 (2013), e54293 | DOI

[20] D. A. Suplatov, V. K. Shvyadas, “Izuchenie funktsionalnykh i allostericheskikh saitov v supersemeistvakh belkov”, Acta Naturae, 7 (2015), 39–52 | DOI

[21] Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. Stefanov, V. V. Voevodin, “Praktika superkompyutera «Lomonosov»”, Otkrytye sistemy, 7 (2012), 36–39