@article{VYURV_2019_8_1_a4,
author = {D. A. Suplatov and Ya. A. Sharapova and N. N. Popova and K. E. Kopylov and Vl. V. Voevodin and V. K. \v{S}vedas},
title = {Molecular dynamics in the force field {FF14SB} in water {TIP4P-Ew,} and in the force field {FF15IPQ} in water {SPC/E}$_b$: a comparative analysis on {GPU} and {CPU}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {71--88},
year = {2019},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/}
}
TY - JOUR AU - D. A. Suplatov AU - Ya. A. Sharapova AU - N. N. Popova AU - K. E. Kopylov AU - Vl. V. Voevodin AU - V. K. Švedas TI - Molecular dynamics in the force field FF14SB in water TIP4P-Ew, and in the force field FF15IPQ in water SPC/E$_b$: a comparative analysis on GPU and CPU JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 71 EP - 88 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/ LA - ru ID - VYURV_2019_8_1_a4 ER -
%0 Journal Article %A D. A. Suplatov %A Ya. A. Sharapova %A N. N. Popova %A K. E. Kopylov %A Vl. V. Voevodin %A V. K. Švedas %T Molecular dynamics in the force field FF14SB in water TIP4P-Ew, and in the force field FF15IPQ in water SPC/E$_b$: a comparative analysis on GPU and CPU %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 71-88 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/ %G ru %F VYURV_2019_8_1_a4
D. A. Suplatov; Ya. A. Sharapova; N. N. Popova; K. E. Kopylov; Vl. V. Voevodin; V. K. Švedas. Molecular dynamics in the force field FF14SB in water TIP4P-Ew, and in the force field FF15IPQ in water SPC/E$_b$: a comparative analysis on GPU and CPU. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a4/
[1] D. A. Suplatov, N. N. Popova, K. E. Kopylov, M. V. Shegay, Vl. V. Voevodin, V. K. Švedas, “Hybrid Computing Clusters to Study Protein Structure, Function and Regulation”, Bulletin of South Ural State University. Series: Mathematical Modeling, Programming Computer Software, 6:4 (2017), 74–90 | DOI
[2] R. C. Godwin, R. Melvin, F. R. Salsbury, “Molecular Dynamics Simulations and ComputerAided Drug Discovery”, Computer-Aided Drug Discovery, 2016, 1–31 | DOI
[3] D. E. Shaw, et al., “Anton, a Special-Purpose Machine for Molecular Dynamics Simulation”, Communications of the ACM, 51:7 (2008), 91–97 | DOI
[4] D. E. Shaw, et al., “Anton 2: Raising the Bar for Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer”, International Conference for High Performance Computing, Networking, Storage and Analysis (SC '14): Proceedings of the International Conference (New Orleans, LA, USA, November 16–21, 2014), IEEE Press, 2014, 41–53 | DOI
[5] M. S. Nobile, et al., “Graphics Processing Units in Bioinformatics, Computational Biology and Systems Biology”, Briefings in Bioinformatics, 18:5 (2016), 870–885 | DOI
[6] R. Salomon-Ferrer, et al., “Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald”, Journal of Chemical Theory and Computation, 9:9 (2013), 3878–3888 | DOI
[7] A. W. Gotz, et al., “Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born”, Journal of Chemical Theory and Computation, 8:5 (2012), 1542–1555 | DOI
[8] Dokumentatsiya k programmnomu obespecheniyu GROMACS } {\tt http://manual.gromacs.org/documentation/2018/user-guide/force-fields.html
[9] J. A. Maier, et al., “FF14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from FF99SB”, Journal of Chemical Theory and Computation, 11:8 (2015), 3696–3713 | DOI
[10] Dokumentatsiya k programmnomu obespecheniyu AMBER, P. 33 } {\tt http://ambermd.org/doc12/Amber17.pdf
[11] K. T. Debiec, et al., “Further Along the Road Less Traveled: AMBER FF15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model”, Journal of Chemical Theory and Computation, 12:8 (2016), 3926–3947 | DOI
[12] A. Onufriev, “Implicit Solvent Models in Molecular Dynamics Simulations: A Brief Overview”, Annual Reports in Computational Chemistry, 4 (2008), 125–137 | DOI
[13] V. Wong, D. A. Case, “Evaluating Rotational Diffusion From Protein MD Simulations”, The Journal of Physical Chemistry B, 112:19 (2008), 6013–6024 | DOI
[14] H. W. Horn, et al., “Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew”, The Journal of Chemical Physics, 120:20 (2004), 9665–9678 | DOI
[15] K. Takemura, A. Kitao, “Water Model Tuning for Improved Reproduction of Rotational Diffusion and NMR Spectral Density”, The Journal of Physical Chemistry B, 116:22 (2012), 6279–6287 | DOI
[16] L. Pierce, et al., “Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics”, Journal of Chemical Theory and Computation, 8:9 (2012), 2997–3002 | DOI
[17] D. Suplatov, K. Kopylov, Y. Sharapova, V. Švedas, “Human p38a Mitogen-Activated Protein Kinase in the Asp168-Phe169-Gly170-in (DFG-in) State Can Bind Allosteric Inhibitor Doramapimod”, Journal of Biomolecular Structure and Dynamics, 2018 | DOI
[18] Y. Sharapova, D. Suplatov, V. Švedas, “Neuraminidase A from Streptococcus Pneumoniae Has a Modular Organization of Catalytic and Lectin Domains Separated by a Flexible Linker”, The FEBS Journal, 285:13 (2018), 2428–2445 | DOI
[19] A. K. Crooke, et al., “CcpA-Independent Glucose Regulation of Lactate Dehydrogenase 1 in Staphylococcus Aureus”, PLoS One, 8:1 (2013), e54293 | DOI
[20] D. A. Suplatov, V. K. Shvyadas, “Izuchenie funktsionalnykh i allostericheskikh saitov v supersemeistvakh belkov”, Acta Naturae, 7 (2015), 39–52 | DOI
[21] Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. Stefanov, V. V. Voevodin, “Praktika superkompyutera «Lomonosov»”, Otkrytye sistemy, 7 (2012), 36–39