Fractal search algorithm in relational databases
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 4, pp. 61-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with the development of algorithms of fractal analysis of relational databases. An overview and comparative analysis of the known applications of the theory of fractals in data processing is provided. A new algorithm of fractal search in a relational database, which allows detecting duplicate data group, is presented. Implementation of the proposed algorithm for the Oracle DBMS is considered. An implementation using distributed computing MapReduce paradigm is described. Examples of using the developed algorithm to compress and analyze the contents of the database are presented. The results of computational experiments are given.
Keywords: relational databases, the theory of fractals, fractal analysis of databases
Mots-clés : data compression.
@article{VYURV_2014_3_4_a3,
     author = {T. Yu. Lymar and T. S. Mantrova and N. Yu. Staroverova},
     title = {Fractal search algorithm in relational databases},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {61--74},
     year = {2014},
     volume = {3},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a3/}
}
TY  - JOUR
AU  - T. Yu. Lymar
AU  - T. S. Mantrova
AU  - N. Yu. Staroverova
TI  - Fractal search algorithm in relational databases
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2014
SP  - 61
EP  - 74
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a3/
LA  - ru
ID  - VYURV_2014_3_4_a3
ER  - 
%0 Journal Article
%A T. Yu. Lymar
%A T. S. Mantrova
%A N. Yu. Staroverova
%T Fractal search algorithm in relational databases
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2014
%P 61-74
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a3/
%G ru
%F VYURV_2014_3_4_a3
T. Yu. Lymar; T. S. Mantrova; N. Yu. Staroverova. Fractal search algorithm in relational databases. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 4, pp. 61-74. http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a3/

[1] J. Adibi, C. Faloutsos, Fractals and Self-similarity in Data Mining: Issue and Approaches - KDD-2002 Workshop Report, , 2002 (data obrascheniya: 1.08.2014) http://www.sigkdd.org/sites/default/files/issues/4-2-2002-12/adibi.pdf

[2] D. Barbara, “Fractal Mining - Self Similarity-based Clustering and its Applications”, Data Mining and Knowledge Discovery Handbook, Springer, 2010, 573–589

[3] R.L. Ferreira Cordeiro, C. Traina Jr, A.J. Traina, J. Lopez, U. Kang, C. Faloutsos, “Clustering very large multi-dimensional datasets with MapReduce”, Proceedings of the 17th International Conference on Knowledge Discovery and Data Mining (KDD '11), 2011, 690–698

[4] R. Lämmel, “Google's MapReduce programming model”, Science of computer programming, 70:1 (2008), 1–30

[5] S.M. Peres, M. L. de Andrade Netto, “A fractal fuzzy approach to clustering tendency analysis”, Advances in Artificial Intelligence-SBIA 2004, Springer, Berlin–Heidelberg, 2004, 395–404

[6] E. Sousa, C. Traina, A. Traina, “A fast and effective method to find correlations among attributes in databases”, Data Mining and Knowledge Discovery, 14:3 (2007), 367–407

[7] M. Stonebraker, MapReduce and parallel DBMSs: friends or foes?, Communications of the ACM, 53:1 (2010), 64–71

[8] C. Traina Jr, A. Traina, L. Wu, C. Faloutsos, “Fast feature selection using fractal dimension”, Journal of Information and Data Management, 1:1 (2010), 3–16

[9] T. White, Hadoop: The definitive guide, O'Reilly Media, Yahoo Press, 2012, 688 pp.

[10] G. Yan, Z. Li, L. Yuan, “The practical method of fractal dimensionality reduction based on Z-ordering technique”, Advanced Data Mining and Applications, 2006, 542–549

[11] O. Zmeškal, M. Veselý, M. Nežádal, M. Buchníček, “Fractal analysis of image structures”, Harmonic and Fractal Image Analysis, 2001, 3–5

[12] C.J. Date, An Introduction to Database System, Addison-Wesley, 2003, 1024 pp.

[13] T. Kyte, Expert Oracle Database Architecture Oracle Database 9i, 10g, and 11g Programming Techniques and Solutions, Apress, 2010, 832 pp.

[14] T.Yu. Lymar, T.S. Mantrova, “Fractal search the database using distributed computing”, Parallel Computational Technologies (PCT'2014), Proceedings of the International Scientific Conference (Rostov-on-Don, Russia, April 1–3, 2014), Publishing of the South Ural State University, Chelyabinsk, 2014, 369

[15] T.Yu. Lymar, N.Yu. Staroverova, “Parallel algorithm of fractal database search”, Parallel Computational Technologies (PCT'2011), Proceedings of the International Scientific Conference (Moscow, Russia, March 28 – April 1, 2011), Publishing of the South Ural State University, Chelyabinsk, 2011, 703

[16] B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, NY, 1982, 461 pp.

[17] Official Portal of Rosreestr, (accessed: 07.05.2014) http://rosreestr.ru

[18] Official site of the FCC FSUE «Zemlya», (accessed: 07.05.2014) http://www.fccland.ru

[19] S. Welstead, Fractal and Wavelet Image Compression Techniques, SPIE Publications, 1999, 254 pp.