@article{VYURV_2014_3_4_a1,
author = {D. D. Yantsen and M. L. Zymbler},
title = {Representative sampling algorithm for database systems based on the partitioned parallelism},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {36--50},
year = {2014},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a1/}
}
TY - JOUR AU - D. D. Yantsen AU - M. L. Zymbler TI - Representative sampling algorithm for database systems based on the partitioned parallelism JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2014 SP - 36 EP - 50 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a1/ LA - ru ID - VYURV_2014_3_4_a1 ER -
%0 Journal Article %A D. D. Yantsen %A M. L. Zymbler %T Representative sampling algorithm for database systems based on the partitioned parallelism %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2014 %P 36-50 %V 3 %N 4 %U http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a1/ %G ru %F VYURV_2014_3_4_a1
D. D. Yantsen; M. L. Zymbler. Representative sampling algorithm for database systems based on the partitioned parallelism. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 4, pp. 36-50. http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a1/
[1] P.S. Kostenetskii, A.V. Lepikhov, L.B. Sokolinskii, “Technologies of parallel database systems for hierarchical multiprocessor environments”, Automation and Remote Control, 68:5 (2007), 847–859
[2] C.S. Pan, M.L. Zymbler, “Development of a Parallel Database Management System on the Basis of Open-Source PostgreSQL DBMS”, Bulletin of South Ural State University. Series: Mathematical Modeling, Programming Computer Software, 18(277):12 (2012), 112–120
[3] L.B. Sokolinsky, “Survey of Architectures of Parallel Database Systems”, Programming and Computer Software, 30:6 (2004), 337–346
[4] D.D. Yantsen, M.L Zymbler, “Representative sampling algorithm for parallel database systems”, Parallel Computational Technologies (PCT'2014), Proceedings of the International Scientific Conference (Rostov-on-Don, Russia, April 1–3, 2014), Publishing of the South Ural State University, Chelyabinsk, 2014, 381
[5] S. Acharya, P.B. Gibbons, V. Poosala, S. Ramaswamy, “Join Synopses for Approximate Query Answering”, SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data (June 1-3, 1999, Philadelphia, Pennsylvania, USA), ACM, 1999, 275–286
[6] S. Agarwal, A. Panda, B. Mozafari, A.P. Iyer, S. Madden, I. Stoica, “Blink and It's Done: Interactive Queries on Very Large Data”, Proceedings of the VLDB Endowment, 5:1 (2011), 1902–1905
[7] J. Bisbal, J. Grimson, D.A. Bell, “A Formal Framework for Database Sampling”, Information Software Technology, 47:1 (2005), 819–828
[8] T.S. Buda, “Generation of Test Databases using Sampling Methods”, International Symposium on Software Testing and Analysis, ISSTA'13 (July 15–20, 2013, Lugano, Switzerland), ACM, 2013, 366–369
[9] T.S. Buda, T. Cerqueus, M. Kristiansen, J. Murphy, “VFDS: Very Fast Database Sampling System”, Proceedings of the IEEE 14th International Conference on Information Reuse Integration, IRI 2013 (San Francisco, CA, USA, August 14–16), IEEE, 2013, 153–160
[10] T.S. Buda, T. Cerqueus, J. Murphy, M. Kristiansen, “CoDS: A Representative Sampling Method for Relational Databases”, Database and Expert Systems Applications, 24th International Conference, DEXA 2013, Proceedings, Part I (Prague, Czech Republic, August 26–29), Lecture Notes in Computer Science, 8055, Springer, 2013, 342–356
[11] V.T. Chakaravarthy, V. Pandit, Y. Sabharwal, “Analysis of Sampling Techniques for Association Rule Mining”, Database Theory, ICDT 2009, 12th International Conference, Proceedings (St. Petersburg, Russia, March 23–25, 2009), ACM, 2009, 276–283
[12] S. Chaudhuri, G. Das, U. Srivastava, “Effective Use of Block-Level Sampling in Statistics Estimation”, Proceedings of the ACM SIGMOD International Conference on Management of Data (Paris, France, June 13–18, 2004), ACM, 2004, 287–298
[13] R. Gemulla, P. Rösch, W. Lehner, “Linked Bernoulli Synopses: Sampling along Foreign Keys”, Scientific and Statistical Database Management, 20th International Conference, SSDBM 2008, Proceedings (Hong Kong, China, July 9–11, 2008), Lecture Notes in Computer Science, Springer, 2008, 6–23
[14] B. Goethals, W.L. Page, M. Mampaey, “Mining Interesting Sets and Rules in Relational Databases”, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC) (Sierre, Switzerland, March 22–26), ACM, 2010, 997– 1001
[15] J. Gryz, J. Guo, L. Liu, C. Zuzarte, “Query Sampling in DB2 Universal Database”, Proceedings of the ACM SIGMOD International Conference on Management of Data (Paris, France, June 13–18), ACM, 2004, 839–843
[16] Guide to the Financial Data Set of the PKDD'99 Discovery Challenge, (data obrascheniya: 24.05.2014) http://lisp.vse.cz/pkdd99/Challenge/berka.htm
[17] P.J. Haas, C. Koenig, “A Bi-Level Bernoulli Scheme for Database Sampling”, Proceedings of the ACM SIGMOD International Conference on Management of Data (Paris, France, June 13–18), ACM, 2004, 275–286
[18] Y.E. Ioannidis, V. Poosala, “Histogram-Based Approximation of Set-Valued Query-Answer”, VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases (September 7–10, 1999, Edinburgh, Scotland, UK), Morgan Kaufmann, 1999, 174–185
[19] G.H. John, P. Langley, “Static Versus Dynamic Sampling for Data Mining”, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96) (Portland, Oregon, USA), AAAI Press, 1996, 367–370
[20] M.S. Lakshmi, P.S. Yu, “Effectiveness of Parallel Joins”, IEEE Transactions on Knowledge and Data Engineering, 2:4 (1990), 410–424
[21] F. Olken, D. Rotem, “Random Sampling from Database Files: A Survey”, Statistical and Scientific Database Management, 5th International Conference SSDBM, Proceedings (Charlotte, NC, USA, April 3–5, 1990), Lecture Notes in Computer Science, Springer, 1990, 92–111
[22] Oracle Database SQL Language Reference, (accessed: 24.05.2014) http://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_10002.htm
[23] C.R. Palmer, C. Faloutsos, “Density Biased Sampling: an Improved Method for Data mining and Clustering”, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (May 16–18, 2000, Dallas, Texas, USA), ACM, 2000, 82–92
[24] C.S. Pan, M.L. Zymbler, “Taming Elephants, or How to Embed Parallelism into PostgreSQL”, Database and Expert Systems Applications, 24th International Conference, DEXA 2013, Proceedings, Part I (Prague, Czech Republic, August 26–29), Lecture Notes in Computer Science, 8055, Springer, 2013, 153–164
[25] S. Parthasarathy, “Efficient Progressive Sampling for Association Rules”, Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002) (9–12 December, 2002, Maebashi City, Japan), IEEE, 2002, 354– 361
[26] X. Wu, Y. Wang, S. Guo, Y. Zheng, “Privacy Preserving Database Generation for Database Application Testing”, Fundamenta Informaticae, 78:1 (2007), 595–612
[27] X. Yin, J. Han, J. Yang, P.S. Yu, “Efficient Classification across Multiple Database Relations: A CrossMine Approach”, IEEE Transactions on Knowledge and Data Engineering, 18:1 (2006), 770–783