Solving parabolic-hyperbolic type differential equations with spectral analysis method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 18 (2025) no. 1, pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The study investigates a parabolic-hyperbolic type differential equation with nonlocal boundary and initial conditions. The problem is approached using the spectral analysis method, allowing the solution to be expressed as a series expansion in terms of eigenfunctions of the associated spectral problem. The existence, uniqueness, and stability of the solution are rigorously established through analytical techniques, ensuring the well-posedness of the problem. Furthermore, the study carefully examines the issue of small denominators that arise in the series representation and derives sufficient conditions to guarantee their separation from zero. These results contribute to the broader mathematical theory of mixed-type differential equations, providing valuable insights into their structural properties. The findings have practical applications in various fields of physics and engineering, particularly in modeling wave propagation, heat conduction, and related dynamic processes. The theorems obtained ensure that under appropriate assumptions on the given data, the problem admits a unique and stable solution, reinforcing its theoretical and practical significance.
Keywords: parabolic-hyperbolic type equation, existence and uniqueness theorem, partial differential equation.
@article{VYURU_2025_18_1_a0,
     author = {Dinsever Karahan and Residoglu Mamedov},
     title = {Solving parabolic-hyperbolic type differential equations with spectral analysis method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2025_18_1_a0/}
}
TY  - JOUR
AU  - Dinsever Karahan
AU  - Residoglu Mamedov
TI  - Solving parabolic-hyperbolic type differential equations with spectral analysis method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2025
SP  - 5
EP  - 14
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2025_18_1_a0/
LA  - en
ID  - VYURU_2025_18_1_a0
ER  - 
%0 Journal Article
%A Dinsever Karahan
%A Residoglu Mamedov
%T Solving parabolic-hyperbolic type differential equations with spectral analysis method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2025
%P 5-14
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2025_18_1_a0/
%G en
%F VYURU_2025_18_1_a0
Dinsever Karahan; Residoglu Mamedov. Solving parabolic-hyperbolic type differential equations with spectral analysis method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 18 (2025) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURU_2025_18_1_a0/