Magnetic properties and electronic structure of half-Heusler alloys $\mathrm{FeRhSb}_{1-x}Z_x$ ($Z = \mathrm{P, As, Sn, Si, Ge, Ga, In, Al}$)
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 42-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The electronic structure and magnetic properties of $\mathrm{FeRhSb}_{1-x}Z_x$ ($x = 0, 0,25, 0,5, 0,75, 1$) alloys with $Z = \mathrm{P, As, Sn, Si, Ge, Ga, In, Al}$ are studied by first-principles methods. For all compounds, three cubic phases with different atomic arrangement ($\alpha$, $\beta$, and $\gamma$) are considered. It is shown that the $\beta$-phase is energetically favorable for $\mathrm{FeRhSb}_{1-x}Z_x$ ($x = 0,75, 1$), $\mathrm{FeRhAs}$ and $\mathrm{FeRhSi}$ alloys. For the remaining 29 alloys, the $\gamma$ phase is more energetically stable. The values of equilibrium lattice parameters and magnetic moments of stoichiometric ternary alloys are in good agreement with the literature values collected from other theoretical studies. The half-metallic ferromagnetic behavior is predicted for $\mathrm{FeRhSb}_{0,25}\mathrm{Sn}_{0,75}$, $\mathrm{FeRhGe}$, $\mathrm{FeRhSn}$, and $\mathrm{FeRhSb}_{0,5}\mathrm{Al}_{0,5}$. It has been found that the replacement of the $Z$ element with another $sp$ element allows for the creation of new four-component alloys that exhibit $100~\%$ spin polarization.
Keywords: Heusler alloys, density of electronic states, density functional theory.
Mots-clés : half-metallic ferromagnets
@article{VYURU_2024_17_4_a3,
     author = {{\CYRO}. O. Pavlukhina and V. D. Buchelnikov and V. V. Sokolovskiy and M. A. Zagrebin and I. S. Zotov},
     title = {Magnetic properties and electronic structure of {half-Heusler} alloys $\mathrm{FeRhSb}_{1-x}Z_x$ ($Z = \mathrm{P, As, Sn, Si, Ge, Ga, In, Al}$)},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {42--50},
     year = {2024},
     volume = {17},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a3/}
}
TY  - JOUR
AU  - О. O. Pavlukhina
AU  - V. D. Buchelnikov
AU  - V. V. Sokolovskiy
AU  - M. A. Zagrebin
AU  - I. S. Zotov
TI  - Magnetic properties and electronic structure of half-Heusler alloys $\mathrm{FeRhSb}_{1-x}Z_x$ ($Z = \mathrm{P, As, Sn, Si, Ge, Ga, In, Al}$)
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 42
EP  - 50
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a3/
LA  - en
ID  - VYURU_2024_17_4_a3
ER  - 
%0 Journal Article
%A О. O. Pavlukhina
%A V. D. Buchelnikov
%A V. V. Sokolovskiy
%A M. A. Zagrebin
%A I. S. Zotov
%T Magnetic properties and electronic structure of half-Heusler alloys $\mathrm{FeRhSb}_{1-x}Z_x$ ($Z = \mathrm{P, As, Sn, Si, Ge, Ga, In, Al}$)
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 42-50
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a3/
%G en
%F VYURU_2024_17_4_a3
О. O. Pavlukhina; V. D. Buchelnikov; V. V. Sokolovskiy; M. A. Zagrebin; I. S. Zotov. Magnetic properties and electronic structure of half-Heusler alloys $\mathrm{FeRhSb}_{1-x}Z_x$ ($Z = \mathrm{P, As, Sn, Si, Ge, Ga, In, Al}$). Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 42-50. http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a3/

[1] Sootsman J.R., Duck Young Chung, Kanatzidis M.G., “New and Old Concepts in Thermoelectric Materials”, Angewandte Chemie International Edition, 48:46 (2009), 8616–8639 | DOI

[2] Sakurada S., Shutoh N., “Effect of Ti Substitution on the Thermoelectric Properties of (Zr,Hf) NiSn Half-Heusler Compounds”, Applied Physics Letters, 86:6 (2005), 082105, 3 pp. | DOI

[3] Kimura Y., Tamura Y., Kita T., “Thermoelectric Properties of Directionally Solidified Half-Heusler Compound NbCoSn Alloys”, Applied Physics Letters, 92:1 (2008), 012105, 3 pp. | DOI

[4] Kuble J., “Curie Temperatures of Zinc-Blende Half-Metallic Ferromagnets”, Physical Review B, 67:22 (2003), 220403, 4 pp. | DOI

[5] Ma Jianhua, Hegde V.I., Munira K., Xie Yunkun, Keshavarz S., Mildebrath D.T., Wolverton C., Ghosh A.W., Butler W.H., “Computational Investigation of Half-Heusler Compounds for Spintronics Applications”, Physical Review B, 95 (2017), 024411, 25 pp. | DOI

[6] De Groot R. A., MuellerF. M., van Engen P.G., Buschow K.H.J., “New Class of Materials: Half-Metallic Ferromagnets”, Physics Review Letters, 50:25 (1983), 2024–2027 | DOI

[7] Bennani M.A., Aziz Z., Terkhi S., Elandaloussi E.H., Bouadjemi B., Chenine D., Benidris M., Youb O., Bentata S., “Structural, Electronic, Magnetic, Elastic, Thermodynamic and Thermoelectric Properties of the Half-Heusler RhFe$X$ (with $X$ = Ge, Sn) Compounds”, Journal of Superconductivity and Novel Magnetism, 34:1 (2021), 211–225 | DOI

[8] Meenakshi R., Srinivasan R.A.S., Amudhavalli A., Rajeswarapalanichamy R., Iyakutti K., “Electronic Structure, Magnetic, Optical and Transport Properties of Half-Heusler Alloys RhFe$Z$($Z$=P, As, Sb, Sn, Si, Ge, Ga, In, Al) – a DFT Study”, Phase Transitions, 94:6-8 (2021), 415–435 | DOI

[9] Yun Zhang, Xiaojie Xu, “Machine Learning Modeling of Lattice Constants for Half-Heusler Alloys”, AIP Advances, 10:4 (2020), 045121, 10 pp. | DOI

[10] Muhammad I., Jian-Min Zhang, Alia A., Rehman M.U., Muhammad S., “Structural, Mechanical, Thermal, Magnetic, and Electronic Properties of the RhMnSb Half-Heusler Alloy Under Pressure”, Materials Chemistry and Physics, 251 (2020), 123110, 9 pp. | DOI

[11] Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D., “Segregation Tendency and Properties of FeRh$_{1-x}$Pt$_x$ Alloys”, Journal of Magnetism and Magnetic Materials, 556:6 (2022), 169403, 9 pp. | DOI

[12] Pavlukhina O.O., Sokolovskiy V.V., Zagrebin M.A., Buchelnikov V.D., “Modeling of the Structural and Magnetic Properties of Fe-Rh-($Z$) $Z$=(Mn, Pt) Alloys by First Principles Methods”, Journal of Magnetism and Magnetic Materials, 470 (2019), 69–72 | DOI

[13] Kresse G., Furthmuller J., “Efficient Iterative Schemes for ab Initio Total-Energy Calculations using a Plane-Wave Basis Set”, Physical Review B, 54:16 (1996), 11169–11186 | DOI

[14] Kresse G., Joubert D., “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method”, Physical Review B, 59:3 (1999), 1758–1775 | DOI

[15] Perdew J., Burke K., Ernzerhof M., “Generalized Gradient Approximation Made Simple”, Physics Review Letters, 77:18 (1996), 3865–3868 | DOI

[16] Ahmad R., Gul A., Mehmood N., “Artificial Neural Networks and Vector Regression Models for Prediction of Lattice Constants of Half-Heusler Compounds”, Materials Research Express, 6:4 (2019), 046517, 14 pp. | DOI