Development of a machine learning algorithm for the searches of the new $B_c^+$ meson decays with charmonium and multihadron final states
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 1, pp. 108-115
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper describes the process of implementation of machine learning algorithm for the classification of the events in high energy physics. The results of testing a classifier based on gradient boosted decision tree to improve the selection efficiency of the rare $B_c^+$ meson decays with charmonium and multihadron final states are presented. The development of the algorithm is performed using a toolkit for multivariate data analysis. The training of the classifier is based on the simulated data and experimental data, collected by the LHCb detector at the Large Hadron Collider in the period from 2011 to 2018.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
multivariate analysis, machine learning, data analysis, decision tree, beauty hadrons, charmonium.
                    
                  
                
                
                @article{VYURU_2023_16_1_a8,
     author = {A. V. Egorychev and D. Yu. Pereima},
     title = {Development of a machine learning algorithm for the searches of the new $B_c^+$ meson decays with charmonium and multihadron final states},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {108--115},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_1_a8/}
}
                      
                      
                    TY - JOUR AU - A. V. Egorychev AU - D. Yu. Pereima TI - Development of a machine learning algorithm for the searches of the new $B_c^+$ meson decays with charmonium and multihadron final states JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 108 EP - 115 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_1_a8/ LA - ru ID - VYURU_2023_16_1_a8 ER -
%0 Journal Article %A A. V. Egorychev %A D. Yu. Pereima %T Development of a machine learning algorithm for the searches of the new $B_c^+$ meson decays with charmonium and multihadron final states %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 108-115 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_1_a8/ %G ru %F VYURU_2023_16_1_a8
A. V. Egorychev; D. Yu. Pereima. Development of a machine learning algorithm for the searches of the new $B_c^+$ meson decays with charmonium and multihadron final states. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 1, pp. 108-115. http://geodesic.mathdoc.fr/item/VYURU_2023_16_1_a8/
