Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 111-126
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The research work develops a Context aware Data Fusion with Ensemblebased Machine Learning Model (CDF-EMLM) for improving the health data treatment. This research work focuses on developing the improved context aware data fusion and efficient feature selection algorithm for improving the classification process for predicting the health care data. Initially, the data from Internet of Things (IoT) devices are gathered and pre-processed to make it clear for the fusion processing. In this work, dual filtering method is introduced for data pre-processing which attempts to label the unlabeled attributes in the data that are gathered, so that data fusion can be done accurately. And then the Dynamic Bayesain Network (DBN) is a good trade-off for tractability becoming a tool for CADF operations. Here the inference problem is handled using the Hidden Markov Model (HMM) in the DBN model. After that the Principal Component Analysis (PCA) is used for feature extraction as well as dimension reduction. The feature selection process is performed by using Enhanced Recursive Feature Elimination (ERFE) method for eliminating the irrelevant data in dataset. Finally, this data are learnt using the Ensemble based Machine Learning Model (EMLM) for data fusion performance checking.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
dynamic bayesain network, hidden markov model, healthcare IoT data, machine learning, principal component analysis, enhanced recursive feature elimination.
                    
                    
                    
                  
                
                
                @article{VYURU_2022_15_3_a7,
     author = {S. Noeiaghdam and S. Balamuralitharan and V. Govindan},
     title = {Dynamic {Bayesian} network and hidden {Markov} model of predicting {IoT} data for machine learning model using enhanced recursive feature elimination},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {111--126},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/}
}
                      
                      
                    TY - JOUR AU - S. Noeiaghdam AU - S. Balamuralitharan AU - V. Govindan TI - Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 111 EP - 126 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/ LA - en ID - VYURU_2022_15_3_a7 ER -
%0 Journal Article %A S. Noeiaghdam %A S. Balamuralitharan %A V. Govindan %T Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 111-126 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/ %G en %F VYURU_2022_15_3_a7
S. Noeiaghdam; S. Balamuralitharan; V. Govindan. Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 111-126. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/
