@article{VYURU_2022_15_3_a7,
author = {S. Noeiaghdam and S. Balamuralitharan and V. Govindan},
title = {Dynamic {Bayesian} network and hidden {Markov} model of predicting {IoT} data for machine learning model using enhanced recursive feature elimination},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {111--126},
year = {2022},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/}
}
TY - JOUR AU - S. Noeiaghdam AU - S. Balamuralitharan AU - V. Govindan TI - Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 111 EP - 126 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/ LA - en ID - VYURU_2022_15_3_a7 ER -
%0 Journal Article %A S. Noeiaghdam %A S. Balamuralitharan %A V. Govindan %T Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 111-126 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/ %G en %F VYURU_2022_15_3_a7
S. Noeiaghdam; S. Balamuralitharan; V. Govindan. Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 111-126. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/
[1] Hao Jin, Yan Luo, Peilong Li, Jomol Mathew, “A Review of Secure and Privacy-Preserving Medical Data Sharing”, IEEE Access, 7 (2019), 61656–61669 | DOI
[2] Perez S., Hernandez-Ramos J. L., Pedone D., Rotondi D., Straniero L. et al., “A Digital Envelope Approach Using Attribute-Based Encryption for Secure Data Exchange in IoT Scenarios”, Global Internet of Things Summit, 2017, 1–6 | DOI
[3] Mohanta B. K., Jena D., Sobhanayak S., “Multi-Party Computation Review for Secure Data Processing in IoT-Fog Computing Environment”, International Journal of Security and Networks, 15:3 (2020), 164–174 | DOI
[4] Xueping Liang, Juan Zhao, Sachin Shetty, Jihong Liu, Danyi Li, “Integrating Blockchain for Data Sharing and Collaboration in Mobile Healthcare Applications”, IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (Montreal, 2017), 1–5 | DOI
[5] Theodouli A., Arakliotis S., Moschou K., Votis K., Tzovaras D., “On the Design of a Blockchain-Based System to Facilitate Healthcare Data Sharing”, 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (New York, 2018), 1374–1379 | DOI
[6] Mikula T., Jacobsen R. H., “Identity and Access Management with Blockchain in Electronic Healthcare Records”, 21st Euromicro Conference on Digital System Design (Prague, 2018), 699–706 | DOI
[7] Rajesh Kumar, WenYong Wang, Jay Kumar, Ting Yang, Abdullah Khan, Wazir Ali, Ikram Ali, “An Integration of Blockchain and AI for Secure Data Sharing and Detection of CT Images for the Hospitals”, Computerized Medical Imaging and Graphics, 87:1 (2021), 101812 | DOI
[8] Gilula Z., McCulloch R. E., Rossi P. E., “A Direct Approach to Data Fusion”, Journal of Marketing Research, 43:1 (2006), 73–83 | DOI
[9] Uddin M. Z., Hassan M. M., Alsanad A., Savaglio C., “A Body Sensor Data Fusion and Deep Recurrent Neural Network-Based Behavior Recognition Approach for Robust Healthcare”, Information Fusion, 55:3 (2020), 105–115 | DOI
[10] Dautov R., Distefano S., Buyya R., “Hierarchical Data Fusion for Smart Healthcare”, Journal of Big Data, 6:1 (2019), 1–23 | DOI
[11] Begum S., Barua S., Ahmed M. U., “Physiological Sensor Signals Classification for Healthcare Using Sensor Data Fusion and Case-Based Reasoning”, Sensors, 14:7 (2014), 11770–11785 | DOI
[12] Muzammal M., Talat R., Sodhro A. H., Pirbhulal S., “A Multi-Sensor Data Fusion Enabled Ensemble Approach for Medical Data from Body Sensor Networks”, Information Fusion, 53:1 (2020), 155–164 | DOI
[13] Ando B., Baglio S., Lombardo C. O., Marletta V., “A Multisensor Data-Fusion Approach for ADL and Fall Classification”, IEEE Transactions on Instrumentation and Measurement, 65:9 (2016), 1960–1967 | DOI
[14] Sun-Chong Wang, “Artificial Neural Network”, Interdisciplinary Computing in Java Programming, Springer, Boston, 2003, 81–100 | DOI
[15] Kondratenko Y. P., Klymenko L. P., Al Zu'bi E.Y.M., “Structural Optimization of Fuzzy Systems' Rules Base and Aggregation Models”, Kybernetes, 2013
[16] Chen T., He T., Benesty M., Khotilovich V., Tang Y., Cho H., “Xgboost: Extreme Gradient Boosting”, R Package Version, 1:4 (2015), 1–4
[17] Chao-Ying Joanne Peng, Kuk Lida Lee, Ingersoll G. M., “An Introduction to Logistic Regression Analysis and Reporting”, The Journal of Educational Research, 96:1 (2002), 3–14 | DOI