Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 111-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The research work develops a Context aware Data Fusion with Ensemblebased Machine Learning Model (CDF-EMLM) for improving the health data treatment. This research work focuses on developing the improved context aware data fusion and efficient feature selection algorithm for improving the classification process for predicting the health care data. Initially, the data from Internet of Things (IoT) devices are gathered and pre-processed to make it clear for the fusion processing. In this work, dual filtering method is introduced for data pre-processing which attempts to label the unlabeled attributes in the data that are gathered, so that data fusion can be done accurately. And then the Dynamic Bayesain Network (DBN) is a good trade-off for tractability becoming a tool for CADF operations. Here the inference problem is handled using the Hidden Markov Model (HMM) in the DBN model. After that the Principal Component Analysis (PCA) is used for feature extraction as well as dimension reduction. The feature selection process is performed by using Enhanced Recursive Feature Elimination (ERFE) method for eliminating the irrelevant data in dataset. Finally, this data are learnt using the Ensemble based Machine Learning Model (EMLM) for data fusion performance checking.
Keywords: dynamic bayesain network, hidden markov model, healthcare IoT data, machine learning, principal component analysis, enhanced recursive feature elimination.
@article{VYURU_2022_15_3_a7,
     author = {S. Noeiaghdam and S. Balamuralitharan and V. Govindan},
     title = {Dynamic {Bayesian} network and hidden {Markov} model of predicting {IoT} data for machine learning model using enhanced recursive feature elimination},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {111--126},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/}
}
TY  - JOUR
AU  - S. Noeiaghdam
AU  - S. Balamuralitharan
AU  - V. Govindan
TI  - Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2022
SP  - 111
EP  - 126
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/
LA  - en
ID  - VYURU_2022_15_3_a7
ER  - 
%0 Journal Article
%A S. Noeiaghdam
%A S. Balamuralitharan
%A V. Govindan
%T Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2022
%P 111-126
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/
%G en
%F VYURU_2022_15_3_a7
S. Noeiaghdam; S. Balamuralitharan; V. Govindan. Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 111-126. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a7/