A model for competition of technologies for limiting resources
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 2, pp. 27-42
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model for the development of technologies competing for common productive resources is proposed and analyzed. The model is based on the principles of evolutionary economics and is given by a “consumer-resource” system of equations. Consumers are homogeneous populations of firms employing the same technology. The output of firms is characterized by the production function with complementary factors. A technology can increase owing to the entry of new firms at a specific rate proportional to the output, and decrease due to ruin of a firm. Resources consumed enter the industry from the outside; unused resources leave the industry. The lower the minimum demand of a technology for a given resource, the higher its competitiveness with respect to this resource. We obtain the conditions for the coexistence of technologies, according to which each competitor should surpass the others in the efficiency of using one resource and be inferior to them in the efficiency of using other resources. We show the existence of two fundamentally different mechanisms of natural selection of the dominant technology, namely, by selection value and by the initial conditions. We investigate the potential possibility of regulating the technological diversity of the industry by managing the rates of resource supply.
Mots-clés : diffusion of innovations
Keywords: population-based model, consumer-resource, evolutionary economics, technocenosis.
@article{VYURU_2022_15_2_a2,
     author = {A. Mustafin and A. Kantarbayeva},
     title = {A model for competition of technologies for limiting resources},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {27--42},
     year = {2022},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_2_a2/}
}
TY  - JOUR
AU  - A. Mustafin
AU  - A. Kantarbayeva
TI  - A model for competition of technologies for limiting resources
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2022
SP  - 27
EP  - 42
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2022_15_2_a2/
LA  - ru
ID  - VYURU_2022_15_2_a2
ER  - 
%0 Journal Article
%A A. Mustafin
%A A. Kantarbayeva
%T A model for competition of technologies for limiting resources
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2022
%P 27-42
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2022_15_2_a2/
%G ru
%F VYURU_2022_15_2_a2
A. Mustafin; A. Kantarbayeva. A model for competition of technologies for limiting resources. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 2, pp. 27-42. http://geodesic.mathdoc.fr/item/VYURU_2022_15_2_a2/

[1] Gort M., Klepper S., “Time Paths in the Diffusion of Product Innovations”, The Economic Journal, 92:367 (1982), 630–653 | DOI

[2] Geroski P. A., “Models of Technology Diffusion”, Research Policy, 29:4 (2000), 603–625 | DOI

[3] Meade N., Islam T., “Modelling and Forecasting the Diffusion Of Innovation – A 25-Year Review”, International Journal of Forecasting, 22:3 (2006), 519–545 | DOI

[4] Lechman E., ICT Diffusion in Developing Countries: Towards a New Concept of Technological Takeoff, Springer, Cham, 2015, 29–82 | DOI

[5] Rogers E. M., Diffusion of Innovations, Free Press, New York, 2003

[6] Bass F. M., “A New Product Growth for Model Consumer Durables”, Management Science, 15:5 (1969), 215–227 | DOI | Zbl

[7] Fourt L. A., Woodlock J. W., “Early Prediction of Market Success for New Grocery Products”, Journal of Marketing, 25:2 (1960), 31–38 | DOI

[8] Mansfield E., “Technical Change and the Rate of Imitation”, Econometrica, 29:4 (1961), 741–766 | DOI | Zbl

[9] Gause G. F., The Struggle for Existence, Dover, Mineola, 2003

[10] Bazykin A. D., Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998, 101–103 | DOI | MR

[11] Batten D., “On the Dynamics of Industrial Evolution”, Regional Science and Urban Economics, 12:3 (1982), 449–462 | DOI

[12] Ping Chen, Economic Complexity and Equilibrium Illusion, Routledge, London, 2010, 53–82 | DOI

[13] Akhrem A. A., Makarov I. I., Rakhmankulov V. Z., Mathematical Theory of Virtualization of Design Processes and Technology Transfer, Fizmatlit, M., 2013, 194–213 (in Russian)

[14] Marasco A., Picucci A., Romano A., “Market Share Dynamics Using Lotka–Volterra Models”, Technological Forecasting and Social Change, 105 (2016), 49–62 | DOI

[15] Zhang Guanglu, McAdams D. A., Shankar V., Darani M. M., “Technology Evolution Prediction Using Lotka–Volterra Equations”, Journal of Mechanical Design, 140:6 (2018), 061101 | DOI

[16] Odum E. P., Barrett G. W., Fundamentals of Ecology, Thomson Brooks/Cole, Belmont, 2005, 283–284

[17] Bardeen M., Cerpa N., “Editorial: Technological Evolution in Society – The Evolution of Mobile Devices”, Journal of Theoretical and Applied Electronic Commerce Research, 10:1 (2015), 1–7 | DOI

[18] MacArthur R., “Species Packing and Competitive Equilibrium for Many Species”, Theoretical Population Biology, 1:1 (1970), 1–11 | DOI | MR

[19] Stewart F. M., Levin B. R., “Partitioning of Resources and the Outcome of Interspecific Competition: A Model and Some General Considerations”, The American Naturalist, 107:954 (1973), 171–198 | DOI

[20] Tilman D., Resource Competition and Community Structure, Princeton University Press, Princeton, 1982

[21] Abrosov N. S., Bogomolov A. G., Ecological and Genetic Patterns of Coexistence and Coevolution of Species, Nauka, Novosibirsk, 1988 (in Russian)

[22] Alekseev V. V., Kryshev I. I., Sazykina T. G., Physical and Mathematical Modeling of Ecosystems, Gidrometeoizdat, St. Petersburg, 1992, 34–109 (in Russian)

[23] Grover J. P., Resource Competition, Chapman Hall, New York, 1997

[24] Goodwin R. M., Essays in Economic Dynamics, Palgrave Macmillan, London, 1982, 165–170 | DOI

[25] Dejuán O., Dejuán-Bitriá D., “A Predator-Prey Model to Explain Cycles in Credit-Led Economies”, Review of Keynesian Economics, 6:2 (2018), 159–179 | DOI

[26] Romanov V. P., Akhmadeev B. A., “Innovation Ecosystem Modelling Based on “Predator-Prey” Model”, Business Informatics, 2015, no. 1(31), 7–17 (in Russian)

[27] Schumpeter J. A., Business Cycles: A Theoretical, Historical and Statistical Analysis of the Capitalist Process, Porcupine Press, Philadelphia, 1982

[28] Armstrong R. A., McGehee R., “Competitive Exclusion”, The American Naturalist, 115:2 (1980), 151–170 | DOI | MR

[29] Hodgson G. M., Economics and Evolution, University of Michigan Press, Ann Arbor, 1993, 205–207 | DOI

[30] Hess M. C.M., Mesléard F., Buisson E., “Priority Effects: Emerging Principles for Invasive Plant Species Management”, Ecological Engineering, 127 (2019), 48–57 | DOI

[31] Huber J. C., “Invention and Inventivity is a Random, Poisson Process: A Potential Guide to Analysis of General Creativity”, Creativity Research Journal, 11:3 (1998), 231–241 | DOI

[32] Quastler H., The Emergence of Biological Organization, Yale University Press, New Haven, 1964