Semilinear Sobolev type mathematical models
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 1, pp. 43-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article contains a review of the results obtained in the scientific school of Georgy Sviridyuk in the field of semilinear Sobolev type mathematical models. The paper presents results on solvability of the Cauchy and Showalter–Sidorov problems for semilinear Sobolev type equations of the first, the second and higher orders, as well as examples of non-classical models of mathematical physics, such as the generalized Oskolkov model of nonlinear filtering, propagation of ion-acoustic waves in plasma, propagation waves in shallow water, which are studied by reduction to one of the above abstract problems. Methods for studying the semilinear Sobolev type equations are based on the theory of relatively $p$-bounded operators for equations of the first order and the theory of relatively polynomially bounded operator pencils for equations of the second and higher orders in the variable $t$. The paper uses the phase space method, which consists in reducing a singular equation to a regular one defined on some subspace of the original space, to prove existence and uniqueness theorems, and the Galerkin method to construct an approximate solution.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Oskolkov equation, equation of ion-acoustic waves in plasma, modified Boussinesq equation, semilinear Sobolev type equation, relatively $p$-bounded operators, relatively polynomially bounded operator pencils, Galerkin method, *-weak convergence.
                    
                    
                    
                  
                
                
                @article{VYURU_2022_15_1_a2,
     author = {A. A. Zamyshlyaeva and E. V. Bychkov},
     title = {Semilinear {Sobolev} type mathematical models},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {43--59},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_1_a2/}
}
                      
                      
                    TY - JOUR AU - A. A. Zamyshlyaeva AU - E. V. Bychkov TI - Semilinear Sobolev type mathematical models JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 43 EP - 59 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_1_a2/ LA - en ID - VYURU_2022_15_1_a2 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A E. V. Bychkov %T Semilinear Sobolev type mathematical models %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 43-59 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_1_a2/ %G en %F VYURU_2022_15_1_a2
A. A. Zamyshlyaeva; E. V. Bychkov. Semilinear Sobolev type mathematical models. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 1, pp. 43-59. http://geodesic.mathdoc.fr/item/VYURU_2022_15_1_a2/
