Mots-clés : microservices.
@article{VYURU_2021_14_3_a3,
author = {E. A. Zharkov and V. D. Malygin},
title = {Intellectual mathematical support software and inner architecture of {LMS} {MAI} {CLASS.NET}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {46--60},
year = {2021},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a3/}
}
TY - JOUR AU - E. A. Zharkov AU - V. D. Malygin TI - Intellectual mathematical support software and inner architecture of LMS MAI CLASS.NET JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 46 EP - 60 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a3/ LA - en ID - VYURU_2021_14_3_a3 ER -
%0 Journal Article %A E. A. Zharkov %A V. D. Malygin %T Intellectual mathematical support software and inner architecture of LMS MAI CLASS.NET %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 46-60 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a3/ %G en %F VYURU_2021_14_3_a3
E. A. Zharkov; V. D. Malygin. Intellectual mathematical support software and inner architecture of LMS MAI CLASS.NET. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 3, pp. 46-60. http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a3/
[1] Naumov A.V., Dzhumurat A.S., Inozemtsev A.O., “Distance Learning System for Mathematical Disciplines CLASS.NET”, Herald of Computer and Information Technologies, 1:10 (2014), 36–40 (in Russian)
[2] Kibzun A.I., Karolinskaya S.N., Shayukov R.I., “A Remote Study System for Mathematical Disciplines in the University”, Herald of Computer and Information Technologies, 1:4 (2006), 29–36 (in Russian)
[3] Kibzun A.I., Zharkov E.A., “Two Algorithms for Estimating Test Complexity Levels”, Automation and Remote Control, 78:12 (2017), 2165–2177 | DOI | Zbl
[4] Naumov A.V., Mkhitaryan G.A., “On the Problem of Probabilistic Optimization for Tests within the Time-Limit”, Automation and Remote Control, 77:9 (2016), 1612–1621 | DOI | Zbl
[5] Rui Chen, Shanshan Li, Zheng Li, “From Monolith to Microservices: A Dataflow-Driven Approach”, 24th Asia-Pacific Software Engineering Conference (APSEC) (Nanjing, 2017), 466–475
[6] Newman S., Building Microservices: Designing Fine-Grained Systems, O'Reilly Media, Sebastopol, 2015
[7] Villamizar M., Garces O., Lang M., “Cost Comparison of Running Web Applications in the Cloud Using Monolithic, Microservice, and AWS Lambda Architectures”, Service Oriented Computing and Applications, 11:2 (2017), 233–247 | DOI
[8] Richards M., Microservices vs. Service-Oriented Architecture, O'Reilly Media, Sebastopol, 2015
[9] Vernon V., Implementing Domain-Driven Design, Addison-Wesley Professional, Massachusetts, 2013
[10] Richardson C., Microservice Patterns, Manning, New York, 2017
[11] Apache JMeterTM (accessed 18 April 2021)
[12] Kumari S., Rath S., “Performance Comparison of SOAP and REST Based Web Services for Enterprise Application Integration”, International Conference on Advances in Computing, Communications and Informatics (ICACCI) (Bangalore, 2015), 1656–1660
[13] Ueda T., Nakaike T., Ohara M., “Workload Characterization for Microservices”, IEEE International Symposium on Workload Characterization (IISWC) (Rhode Island, 2016), 1–10
[14] XGBoost Homepage, (accessed 18 April 2021) https://neerc.ifmo.ru/wiki/index.php?title=XGBoost
[15] Van der Linden W.J., Conceptual Issues in Response-Time Modeling, Law School Admission Council, Philadelphia, 2008
[16] Van der Linden W.J., “A Bivariate Lognormal Response-Time Model for the Detection of Collusion Between Test Takers”, Journal of Educational and Behavioral Statistics, 34:3 (2009), 378–394 | DOI
[17] Liao D., Modeling the Speed-Accuracy-Difficulty Interaction in Joint Modeling of Responses and Response Time, Dissertation, University of Maryland, Maryland, 2018 | DOI
[18] Rushkin I., Chuang I., Tingley D., “Modelling and Using Response Times in Online Courses”, Journal of Learning Analytics, 6:3 (2019), 76–89 | DOI