Adaptation of Kuropatenko method for calculating shock waves in Euler coordinates
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 91-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the moment, there is no implementation of the well-proven numerical method of Kuropatenko in Eulerian coordinates. Such implementation has a promising capabilities for solving a certain scope of problems. This paper is devoted to adaptation of Kuropatenko method for calculating shock waves using Euler coordinates. The application area of the original method is limited and does not include the simulation of multicomponent and multiphase flows of reacting mixtures in two- and three-dimensional spaces. The result obtained demonstrate the efficiency of the developed modification and show the advantages of the extension of this method into multidimensional algorithms.
Keywords: shock wave, Kuropatenko method, numerical methods, conservation laws.
@article{VYURU_2021_14_1_a6,
     author = {P. E. Belyaev and I. R. Makeeva and E. E. Pigasov and D. A. Mastyuk},
     title = {Adaptation of {Kuropatenko} method for calculating shock waves in {Euler} coordinates},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {91--103},
     year = {2021},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a6/}
}
TY  - JOUR
AU  - P. E. Belyaev
AU  - I. R. Makeeva
AU  - E. E. Pigasov
AU  - D. A. Mastyuk
TI  - Adaptation of Kuropatenko method for calculating shock waves in Euler coordinates
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2021
SP  - 91
EP  - 103
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a6/
LA  - ru
ID  - VYURU_2021_14_1_a6
ER  - 
%0 Journal Article
%A P. E. Belyaev
%A I. R. Makeeva
%A E. E. Pigasov
%A D. A. Mastyuk
%T Adaptation of Kuropatenko method for calculating shock waves in Euler coordinates
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2021
%P 91-103
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a6/
%G ru
%F VYURU_2021_14_1_a6
P. E. Belyaev; I. R. Makeeva; E. E. Pigasov; D. A. Mastyuk. Adaptation of Kuropatenko method for calculating shock waves in Euler coordinates. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 91-103. http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a6/

[1] Zel'dovich Ya.B., Raizer Yu.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Fizmatlit, M., 2008 (in Russian)

[2] Kuropatenko V.F., Essentials of Numerical Methods in Continuum Mechanics, South Ural State University Publishing Centre, Chelyabinsk, 2017 (in Russian)

[3] Kuropatenko V.F., “Shockwave Calculation Method”, Academy of Sciences of USSR Reports, 3:4 (1960), 771–772 (in Russian)

[4] Kuropatenko V.F., “A Method for Constructing Difference Schemes for the Numerical Integration of the Equations of Gas Dynamics”, Russian Mathematics, 1962, no. 3(28), 75–83 (in Russian)

[5] V.F. Kuropatenko, I.R. Makeeva, “Calculational Technique for Shock Waves with Elevated Monotonocity”, Finite-Difference Methods: Theory and Application, National Academy of Sciences of Belorus, Minsk, 1998, 80–85

[6] Kuropatenko V.F., Kuznetsova I.I., Makeeva I.R., Murashko A.S., Uvarov V.N., “Study of the Influence of Pulsating Injection on the Flow Near the Streamlined Body”, Atomic Science and Technology Issues. Series: Mathematical Modelling of Physical Processes, 2002, no. 3, 60–71 (in Russian)

[7] F. Moukalled, L. Mangani, M. Darwis, The Finite Volume Method in Computational Fluid Dynamics An Advanced Introduction with OpenFOAM and Matlab, Springer, 2015 | DOI

[8] G.A. Sod, “Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, 27 (1978), 1–31 | DOI

[9] Zaliznyak V., Essentials of Computational Physics, v. 1, Introduction into Finite-Difference Methods, Technosphera, M., 2008 (in Russian)