@article{VYURU_2020_13_4_a1,
author = {S. I. Kadchenko and A. V. Pursheva and L. S. Ryazanova},
title = {Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {19--32},
year = {2020},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a1/}
}
TY - JOUR AU - S. I. Kadchenko AU - A. V. Pursheva AU - L. S. Ryazanova TI - Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2020 SP - 19 EP - 32 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a1/ LA - ru ID - VYURU_2020_13_4_a1 ER -
%0 Journal Article %A S. I. Kadchenko %A A. V. Pursheva %A L. S. Ryazanova %T Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2020 %P 19-32 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a1/ %G ru %F VYURU_2020_13_4_a1
S. I. Kadchenko; A. V. Pursheva; L. S. Ryazanova. Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 19-32. http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a1/
[1] Marchenko V. A., The Spectral Theory of Sturm–Liouville Operators, Naukova dumka, Kiev, 1972 (in Russian) | MR
[2] Yurko V. A., Introduction to the Theory of Inverse Spectral Problems, Fizmatlit, M., 2007 (in Russian)
[3] V.A. Yurko, Methods of Spectral Mappings in the Inverse Problem Theory, VSP, Utrecht, 2002 | DOI | MR
[4] K. Chadan, D. Colton, L. Hfivarinta, W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems, SIAM, Philadelphia, 1997 | DOI | MR | Zbl
[5] R.H. Fabiano, R. Knobel, B.D. Lowe, “A Finite-Difference Algorithm for an Inverse Sturm – Liouville Problem”, IMA Journal of Numerical Analysis, 15 (1995), 75–88 | DOI | MR | Zbl
[6] J.W. Paine, F. de Hoog, R.S. Anderssen, “On the Sturm – Liouville Problems”, Computing, 26 (1981), 123–139 | DOI | MR | Zbl
[7] Sadovnichiy V. A., Dubrovskiy V. V., “Remark on a New Method of Calculation Eigenvalues and Eigenfunctions for Discrete Operators”, Proceedings of the Seminar Named After I. G. Petrovsky, 17, 1994, 244–248 (in Russian)
[8] Kadchenko S. I., “Method of Regularized Traces]”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 37(170):4 (2009), 4–23 (in Russian)
[9] Kadchenko S. I., Kinzina I. I., “Computation of Eigenvalues of Perturbed Discrete Semibounded Operators”, Computational Mathematics and Mathematical Physics, 46:7 (2006), 1200–1206 | DOI | MR
[10] Kadchenko S. I., Kakushkin S. N., “Calculation of Spectral Characteristics of Perturbed Self-Adjoint Operators by Methods of Regularized Traces”, Journal of Mathematical Sciences, 241 (2019), 59–77 (in Russian) | DOI | MR
[11] Dubrovskii V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichii V. A., “Computation of the First Eigenvalues of a Discrete Operator”, Electromagnetic Waves and Electronic Systems, 3:2 (1998), 4–9 (in Russian)
[12] Dubrovskii V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichii V. A., “A New Method for Approximate Evaluation of the First Eigenvalues in the Orr–Zommerfeld Eigenvalue Problem”, Doklady Akademii Nauk, 378 (2001), 443–446 | MR | Zbl
[13] Kadchenko S. I., Zakirova G. A., “Calculation of Eigenvalues of Discrete Semibounded Differential Operators”, Journal of Computational and Engineering Mathematics, 4:1 (2017), 38–47 | DOI | MR | Zbl | Zbl
[14] Kadchenko S. I., “Numerical Method for the Solution of Inverse Problems Generated by Perturbations of Self-Adjoint Operators by Method of Regularized Traces]”, Bulletin of Samara State University. Natural Science Series, 2013, no. 6(107), 23–30 (in Russian)
[15] Kadchenko S. I., Zakirova G. A., Kadchenko A. I., “Solution of Inverse Spectral Problems Generated by Perturbed Self-Adjoint Operators]”, Mathematical Methods in Engineering and Technology, 2016, no. 9(91), 8–11 (in Russian)
[16] Kadchenko S. I., “Algorithms for Solving Inverse Problems Generated by Perturbed Self-Adjoint Operators]”, Actual Problems of Modern Science, Technology and Education, 3 (2015), 138–141 (in Russian)
[17] Kadchenko S. I., “A Numerical Method for Solving Inverse Spectral Problems Generated by Perturbed Self-Adjoint Operators]”, Bulletin of Samara State University. Natural Science Series, 2013, no. 9-1(110), 5–11 (in Russian) | Zbl
[18] Goncharskij A. V., Cherepashhuk A. M., Jagola A. V, Numerical Methods for Solving Inverse Problems of Astrophysics, 1978, Nauka, M. (in Russian) | MR
[19] Tikhonov A. N., Arsenin V.Ya, Methods for Solving Ill-Posed Problems, 1979, Nauka, M. (in Russian)
[20] Penkin V. L., Pryadnev V. L., Differential Equations on Geometric Graphs, Fizmatgiz, M., 2004 (in Russian)
[21] Sviridyuk G. A., “Sobolev-Type Equations on Graphs”, Nonclassical Equations of Mathematical Physics, Collection of Scientific Papers, Novosibirsk, 2002, 221–225 (in Russian) | Zbl
[22] Sviridyuk G. A., Shemetova V. V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | Zbl
[23] Bayazitova A. A., “The Sturm–Liouville Problem on Geometric Graph”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16(192):5 (2010), 4–10 (in Russian) | Zbl