The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 2, pp. 136-142
Voir la notice de l'article provenant de la source Math-Net.Ru
In terms of the theory of relative p-bounded operators, we study the Barenblatt–Zheltov–Kochina model, which describes dynamics of pressure of a filtered fluid in a fractured-porous medium with general Wentzell boundary conditions. In particular, we consider spectrum of one-dimensional Laplace operator on the segment $[0,1]$ with general Wentzell boundary conditions. We examine the relative spectrum in one-dimensional Barenblatt–Zheltov–Kochina equation, and construct the resolving group in the Cauchy-Wentzell problem with general Wentzell boundary conditions. In the paper, these problems are solved under the assumption that the initial space is a contraction of the space $L^2(0,1)$.
Keywords:
Barenblatt–Zheltov–Kochina model, relatively p-bounded operator, phase space, $C_0$-contraction semigroups, Wentzell boundary conditions.
@article{VYURU_2019_12_2_a10,
author = {N. S. Goncharov},
title = {The {Barenblatt--Zheltov--Kochina} model on the segment with {Wentzell} boundary conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {136--142},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/}
}
TY - JOUR AU - N. S. Goncharov TI - The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 136 EP - 142 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/ LA - en ID - VYURU_2019_12_2_a10 ER -
%0 Journal Article %A N. S. Goncharov %T The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 136-142 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/ %G en %F VYURU_2019_12_2_a10
N. S. Goncharov. The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 2, pp. 136-142. http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/