The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 2, pp. 136-142

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of the theory of relative p-bounded operators, we study the Barenblatt–Zheltov–Kochina model, which describes dynamics of pressure of a filtered fluid in a fractured-porous medium with general Wentzell boundary conditions. In particular, we consider spectrum of one-dimensional Laplace operator on the segment $[0,1]$ with general Wentzell boundary conditions. We examine the relative spectrum in one-dimensional Barenblatt–Zheltov–Kochina equation, and construct the resolving group in the Cauchy-Wentzell problem with general Wentzell boundary conditions. In the paper, these problems are solved under the assumption that the initial space is a contraction of the space $L^2(0,1)$.
Keywords: Barenblatt–Zheltov–Kochina model, relatively p-bounded operator, phase space, $C_0$-contraction semigroups, Wentzell boundary conditions.
@article{VYURU_2019_12_2_a10,
     author = {N. S. Goncharov},
     title = {The {Barenblatt--Zheltov--Kochina} model on the segment with {Wentzell} boundary conditions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {136--142},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/}
}
TY  - JOUR
AU  - N. S. Goncharov
TI  - The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2019
SP  - 136
EP  - 142
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/
LA  - en
ID  - VYURU_2019_12_2_a10
ER  - 
%0 Journal Article
%A N. S. Goncharov
%T The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2019
%P 136-142
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/
%G en
%F VYURU_2019_12_2_a10
N. S. Goncharov. The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 2, pp. 136-142. http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a10/