Inverse spectral problems and mathematical models of continuum mechanics
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 2, pp. 5-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article contains results in the field of spectral problems for mathematical models with discrete semi-bounded operator. The theory is based on linear formulas for calculating the eigenvalues of a discrete
 operator. The main idea is to reduce spectral problem to the Fredholm integral equation of the first kind.
 A computationally efficient numerical method for solving inverse spectral problems is developed. The method is based on the Galerkin method
 for discrete semi-bounded operators. This method allows  to reconstruct the coefficient functions of boundary value problems with a high accuracy.
 The results obtained in the article are applicable to the study of problems for differential operators of any order. The results of a numerical solution of the inverse spectral problem for a fourth-order perturbed differential operator are presented.
  We study some mathematical models of continuum mechanics based on spectral problems for a discrete semi-bounded operator.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
inverse spectral problem, discrete operator, fourth order operator, self-adjoint operator, eigenvalues, eigenfunctions, ill-posed problems.
                    
                    
                    
                  
                
                
                @article{VYURU_2019_12_2_a0,
     author = {G. A. Zakirova},
     title = {Inverse spectral problems and mathematical models of continuum mechanics},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a0/}
}
                      
                      
                    TY - JOUR AU - G. A. Zakirova TI - Inverse spectral problems and mathematical models of continuum mechanics JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 5 EP - 24 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a0/ LA - en ID - VYURU_2019_12_2_a0 ER -
%0 Journal Article %A G. A. Zakirova %T Inverse spectral problems and mathematical models of continuum mechanics %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 5-24 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a0/ %G en %F VYURU_2019_12_2_a0
G. A. Zakirova. Inverse spectral problems and mathematical models of continuum mechanics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 2, pp. 5-24. http://geodesic.mathdoc.fr/item/VYURU_2019_12_2_a0/
