Evaluation of the docking algorithm based on tensor train global optimization
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 83-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Effectiveness of modern rational new drugs development is connected with accurate modelling of binding between target-proteins responsible for the disease and small molecules (ligands) candidates to become drugs. The main modeling tools are docking programs for positioning of the ligands in the target proteins. Ligand positioning is realized in the frame of the docking paradigm: the ligand binds to the protein in the pose corresponding to the global energy minimum on the complicated multidimensional energy surface of the protein-ligand system. Docking algorithm on the base of the novel method of tensor train global optimization is presented. The respective novel docking program SOL-T is validated on the set of 30 protein-ligand complexes with known 3D structures. The energy of the protein-ligand system is calculated in the frame of MMFF94 force field. SOL-T performance is compared with the results of exhaustive low energy minima search carried out by parallel FLM docking program on the base of Monte Carlo method using large supercomputer resources. It is shown that SOL-T docking program is about 100 times faster than FLM program, and SOL-T is able to find the global minimum (found by FLM docking program) for 50% of investigated protein-ligand complexes. Dependence of SOL-T performance on the rank of tensor train decomposition is investigated, and it is shown that SOL-T with rank 16 has almost the same performance as SOL-T with rank 64. It is shown that the docking paradigm is true not for all investigated complexes in the frame of MMFF94 force field.
Keywords: docking; global optimization; tensor train; protein-ligand complex; drug design.
@article{VYURU_2015_8_4_a6,
     author = {I. V. Oferkin and D. A. Zheltkov and E. E. Tyrtyshnikov and A. V. Sulimov and D. K. Kutov and V. B. Sulimov},
     title = {Evaluation of the docking algorithm based on tensor train global optimization},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {83--99},
     year = {2015},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a6/}
}
TY  - JOUR
AU  - I. V. Oferkin
AU  - D. A. Zheltkov
AU  - E. E. Tyrtyshnikov
AU  - A. V. Sulimov
AU  - D. K. Kutov
AU  - V. B. Sulimov
TI  - Evaluation of the docking algorithm based on tensor train global optimization
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 83
EP  - 99
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a6/
LA  - en
ID  - VYURU_2015_8_4_a6
ER  - 
%0 Journal Article
%A I. V. Oferkin
%A D. A. Zheltkov
%A E. E. Tyrtyshnikov
%A A. V. Sulimov
%A D. K. Kutov
%A V. B. Sulimov
%T Evaluation of the docking algorithm based on tensor train global optimization
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 83-99
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a6/
%G en
%F VYURU_2015_8_4_a6
I. V. Oferkin; D. A. Zheltkov; E. E. Tyrtyshnikov; A. V. Sulimov; D. K. Kutov; V. B. Sulimov. Evaluation of the docking algorithm based on tensor train global optimization. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 83-99. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a6/

[1] Mobley D. L., Dill K. A., “The Binding of Small-Molecule Ligands to Proteins: “What You See” is not Always “What You Get””, Structure, 17:4 (2009), 489–498 | DOI

[2] Sadovnichii V. A., Sulimov V. B., “Supercomputing Technologies in Medicine”, Supercomputing Technologies in Science, Education, and Industry, Moscow University Publishing, M., 2009, 16–23 (in Russian)

[3] Merz K. M., Ringe D., Reynolds C. H. (eds.), Drug Design: Structure and Ligand-Based Approaches, Cambridge University Press, Cambridge, 2010 | DOI

[4] Plewczynski D., Lazniewski M., Augustyniak R., Ginalski K., “Can We Trust Docking Results? Evaluation of Seven Commonly Used Programs on PDBbind Database”, Journal of Computational Chemistry, 32 (2011), 742–755 | DOI

[5] Klimovich P. V., Shirts M. R., Mobley D. L., “Guidelines for the Analysis of Free Energy Calculations”, Journal of Computer-Aided Molecular Design, 29:5 (2015), 397–411 | DOI

[6] Chen W., Gilson M. K., Webb S. P., Potter M. J., “Modeling Protein-Ligand Binding by Mining Minima”, Journal of Chemical Theory and Computation, 6:11 (2010), 3540–3557 | DOI

[7] Allen W. J., Balius T. E., Mukherjee S., Brozell S. R., Moustakas D. T., Lang P. T., Case D. A., Kuntz I. D., Rizzo R. C., “DOCK6: Impact of New Features and Current Docking Performance”, Journal of Computational Chemistry, 36:15 (2015), 1132–1156 | DOI

[8] Oseledets I. V., Tyrtyshnikov E. E., “Breaking the Curse of Dimensionality, or How to Use SVD in Many Dimensions”, SIAM Journal on Scientific Computing, 31:5 (2009), 3744–3759 | DOI | MR | Zbl

[9] Halgren T. A., “Merck Molecular Force Field. I: Basis, Form, Scope, Parameterization and Performance of MMFF94”, Journal of Computational Chemistry, 17 (1996), 490–519 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M. Jr., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A., “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules”, Journal of the American Chemical Society, 117 (1995), 5179–5197 | DOI

[11] Jorgensen W. L., Maxwell D. S., Tirado-Rives J., “Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids”, Journal of the American Chemical Society, 118:45 (1996), 11225–11236 | DOI

[12] Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., Mackerell A. D. Jr., “CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields”, Journal of Computational Chemistry, 31:4 (2010), 671–690 | DOI

[13] Sulimov A. V., Kutov D. C., Oferkin I. V., Katkova E. V., Sulimov V. B., “Application of the Docking Program SOL for CSAR Benchmark”, Journal of Chemical Information and Modeling, 53:8 (2013), 1946–1956 | DOI

[14] Sinauridze E. I., Romanov A. N., Gribkova I. V., Kondakova O. A., Surov S. S., Gorbatenko A. S., Butylin A. A., Monakov M. Yu., Bogolyubov A. A., Kuznetsov Yu. V., Sulimov V. B., Ataullakhanov F. I., “New Synthetic Thrombin Inhibitors: Molecular Design and Experimental Verification”, PLoS ONE, 6:5 (2011), e19969 | DOI

[15] Sulimov V. B., Katkova E. V., Oferkin I. V., Sulimov A. V., Romanov A. N., Roschin A. I., Beloglazova I. B., Plekhanova O. S., Tkachuk V. A., Sadovnichiy V. A., “Application of Molecular Modeling to Urokinase Inhibitors Development”, BioMed Research International, 2014 (2014), 625176, 15 pp. | DOI

[16] Oseledets I. V., “Tensor-Train Decomposition”, SIAM Journal on Scientific Computing, 33:5 (2011), 2295–2317 | DOI | MR | Zbl

[17] Oseledets I. V., Tyrtyshnikov E. E., “TT-Cross Approximation for Multidimensional Arrays”, Linear Algebra and its Applications, 432:1 (2010), 70–88 | DOI | MR | Zbl

[18] Zheltkov D. A., Oferkin I. V., Katkova E. V., Sulimov A. V., Sulimov V. B., Tyrtyshnikov E. E., “TTDock: Docking Method Based on Tensor Train”, Vychislitelnie metody i programmirovanie, 14 (2013), 279–291 (in Russian)

[19] Zheltkov D. A., Tyrtyshnikov E. E., “The Increase in Dimensionality in the Docking Method Based on Tensor Train”, Vychislitelnie metody i programmirovanie, 14 (2013), 292–293 (in Russian)

[20] Goreinov S. A., Tyrtyshnikov E. E., Zamarashkin N. L., “Pseudo-Skeleton Approximations of Matrices”, Reports of Russian Academy of Sciences, 342:2 (1995), 151–152 | MR

[21] Goreinov S. A., Tyrtyshnikov E. E., Zamarashkin N. L., “A Theory of Pseudo-Skeleton Approximations”, Linear Algebra Appl., 261 (1997), 1–21 | DOI | MR | Zbl

[22] Tyrtyshnikov E. E., “Incomplete Cross Approximation in the Mosaic-Skeleton Method”, Computing, 64:4 (2000), 367–380 | DOI | MR | Zbl

[23] Goreinov S. A., Tyrtyshnikov E. E., “The Maximal-Volume Concept in Approximation by Low-Rank Matrices”, Contemporary Mathematics, 208 (2001), 47–51 | DOI | MR

[24] Goreinov S. A., Oseledets I. V., Savostyanov D. V., Tyrtyshnikov E. E., Zamarashkin N. L., How to Find a Good Submatrix, Research Report 08-10, ICM HKBU, Kowloon Tong, Hong Kong, 2008

[25] Zheltkov D. A., Tyrtyshnikov E. E., “Parallel Implementation of Matrix Cross Method”, Vychislitelnye metody i programmirovanie, 16 (2015), 369–375 (in Russian)

[26] Protein Data Bank, (accessed September 21, 2015) http://www.rcsb.org/

[27] Moscow University Supercomputing Center, (accessed September 21, 2015) http://hpc.msu.ru/

[28] Byrd R. H., Lu P., Nocedal J., Zhu C., “A Limited Memory Algorithm for Bound Constrained Optimization”, SIAM J. Sci. Comput., 16:5 (1995), 1190–1208 | DOI | MR | Zbl

[29] Zhu C., Byrd R. H., Lu P., Nocedal J., “Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization”, ACM Transactions on Mathematical Software, 23:4 (1997), 550–560 | DOI | MR | Zbl

[30] APLITE Program, , Dimonta (accessed September 21, 2015) http://dimonta2.1gb.ru/en/node/55

[31] Avogadro: an Open-Source Molecular Builder and Visualization Tool, Version 1. XX, (accessed September 21, 2015) http://avogadro.openmolecules.net/