Introducing a power of the operator in direct spectral problems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 116-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The resolvent method, proposed by Sadovnichiy and Dubrovsky in the 1990s, is successfully applied in the direct spectral problem to calculate the asymptotics of eigenvalues of the perturbed operator, find formulas for the regularized trace, and recover perturbation. But the application of this method faces difficulties when the resolvent of the unperturbed operator is non-nuclear. Therefore, a number of physical problems could only be considered on the interval. This article describes a justification of the transition to the power of an operator in order to expand the area of possible applications of the resolvent method. Considering the problem of calculating the regularized trace of the Laplace operator on a parallelepiped of arbitrary dimension, we show that for every fixed dimension it is possible to choose the required power of the operator and to calculate the regularized traces. These studies are relevant due to the need to study important applied problems, particularly in hydrodynamics, electronics, elasticity theory, quantum mechanics, and other fields.
Keywords: regularized trace; Laplace operator; power of operator.
@article{VYURU_2014_7_3_a11,
     author = {G. A. Zakirova and E. V. Kirillov},
     title = {Introducing a power of the operator in direct spectral problems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {116--120},
     year = {2014},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/}
}
TY  - JOUR
AU  - G. A. Zakirova
AU  - E. V. Kirillov
TI  - Introducing a power of the operator in direct spectral problems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 116
EP  - 120
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/
LA  - en
ID  - VYURU_2014_7_3_a11
ER  - 
%0 Journal Article
%A G. A. Zakirova
%A E. V. Kirillov
%T Introducing a power of the operator in direct spectral problems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 116-120
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/
%G en
%F VYURU_2014_7_3_a11
G. A. Zakirova; E. V. Kirillov. Introducing a power of the operator in direct spectral problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 116-120. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/

[1] Zakharov V. E., Faddeev L. D., “Korteweg-de Vries Equation: A Completely Integrable Hamiltonian System”, Functional Analysis and its Applications, 5:4 (1971), 280–287 | DOI

[2] Lifshits I. M., “On a Problem of Perturbation Theory Connected with Quantum Statistics”, Russian Mathematical Surveys, 7:1 (1952), 171–180 (in Russian) | MR | Zbl

[3] Gel'fand I. M., Levitan B. M., “An Identity for the Eigenvalues of Second Order Differential Operator”, Doklady Akademii Nauk SSSR, 84:4 (1991), 593–596 (in Russian) | MR

[4] Levitan B. M., Gasymov M. G., “Determination of a Differential Equation by two of its Spectra”, Russian Mathematical Surveys, 19:2 (1964), 1–63 | DOI | MR

[5] Torshina O. A., “The Formula for the First Regularized Trace for the Laplace–Beltrami Operator with Nonsmooth Potential in the Projective Plane”, Differential Equations and Their Applications, Samara, 2006, 32–40 (in Russian)

[6] Zakirova G. A., Sedov A. I., “Asymptotics of the Eigenvalues of the Chebyshev Type Operator with Complex Occurrence of the Parameter”, Bulletin of Magnitogorsk State University, 2004, no. 6, 65–73 (in Russian)

[7] Sedov A. I., “On the Existence of Solutions of the Inverse Problem of Spectral Analysis for Self-adjoint Operator in a Hilbert Space”, Review of Applied and Industrial Mathematics, 17:3 (2010), 454–455 (in Russian)

[8] Dubrovskiy V. V., Nagornyy A. V., “Stability of the Solution of Inverse Problems”, Differential Equations, 28:5 (1992), 839–843 (in Russian) | MR

[9] Zakirova G. A., Inverse Spectral Problem for the Laplace Operator with Multiple Spectrum. Approximate Recovery Potential, LAMBERT Academic Publishing, Saarbrücken, 2011 (in Russian)

[10] Titchmarsh E. C., Eigenfunction Expansion Associated with Second Order Differential Equations, The Clarendon Press, Oxford, 1961 | MR