@article{VYURU_2014_7_3_a11,
author = {G. A. Zakirova and E. V. Kirillov},
title = {Introducing a power of the operator in direct spectral problems},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {116--120},
year = {2014},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/}
}
TY - JOUR AU - G. A. Zakirova AU - E. V. Kirillov TI - Introducing a power of the operator in direct spectral problems JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2014 SP - 116 EP - 120 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/ LA - en ID - VYURU_2014_7_3_a11 ER -
%0 Journal Article %A G. A. Zakirova %A E. V. Kirillov %T Introducing a power of the operator in direct spectral problems %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2014 %P 116-120 %V 7 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/ %G en %F VYURU_2014_7_3_a11
G. A. Zakirova; E. V. Kirillov. Introducing a power of the operator in direct spectral problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 116-120. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a11/
[1] Zakharov V. E., Faddeev L. D., “Korteweg-de Vries Equation: A Completely Integrable Hamiltonian System”, Functional Analysis and its Applications, 5:4 (1971), 280–287 | DOI
[2] Lifshits I. M., “On a Problem of Perturbation Theory Connected with Quantum Statistics”, Russian Mathematical Surveys, 7:1 (1952), 171–180 (in Russian) | MR | Zbl
[3] Gel'fand I. M., Levitan B. M., “An Identity for the Eigenvalues of Second Order Differential Operator”, Doklady Akademii Nauk SSSR, 84:4 (1991), 593–596 (in Russian) | MR
[4] Levitan B. M., Gasymov M. G., “Determination of a Differential Equation by two of its Spectra”, Russian Mathematical Surveys, 19:2 (1964), 1–63 | DOI | MR
[5] Torshina O. A., “The Formula for the First Regularized Trace for the Laplace–Beltrami Operator with Nonsmooth Potential in the Projective Plane”, Differential Equations and Their Applications, Samara, 2006, 32–40 (in Russian)
[6] Zakirova G. A., Sedov A. I., “Asymptotics of the Eigenvalues of the Chebyshev Type Operator with Complex Occurrence of the Parameter”, Bulletin of Magnitogorsk State University, 2004, no. 6, 65–73 (in Russian)
[7] Sedov A. I., “On the Existence of Solutions of the Inverse Problem of Spectral Analysis for Self-adjoint Operator in a Hilbert Space”, Review of Applied and Industrial Mathematics, 17:3 (2010), 454–455 (in Russian)
[8] Dubrovskiy V. V., Nagornyy A. V., “Stability of the Solution of Inverse Problems”, Differential Equations, 28:5 (1992), 839–843 (in Russian) | MR
[9] Zakirova G. A., Inverse Spectral Problem for the Laplace Operator with Multiple Spectrum. Approximate Recovery Potential, LAMBERT Academic Publishing, Saarbrücken, 2011 (in Russian)
[10] Titchmarsh E. C., Eigenfunction Expansion Associated with Second Order Differential Equations, The Clarendon Press, Oxford, 1961 | MR