Numerical Modelling of Dispersive Waves Generated by Landslide Motion
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 121-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors study the surface waves which are generated by the submarine landsliding on a curvilinear bottom slope of a deep reservoir. The shallow water models of the first and second approximations are used to describe the surface waves. An underwater landslide is described by the model of motion of a “quasi-deformed” body on curvilinear surface under the effect of mass and external forces. The numerical algorithm for solving the nonlinear dispersive equations is based on the finite differential approximation of the hyperbolic system, which is similar to the shallow water equations of the first hydrodynamic approximation and the elliptic equation for the depth-average dispersive pressure component. The comparison of the numerical results obtained in the framework of the dispersion-free shallow water model and the nonlinear dispersive model is done.
Keywords: underwater landslide; irregular bottom; surface waves; shallow water equations; nonlinear dispersive equations; landslide motion law; numerical algorithm.
@article{VYURU_2014_7_1_a9,
     author = {Yu. I. Shokin and S. A. Beisel and O. I. Gusev and G. S. Khakimzyanov and L. B. Chubarov and N. Yu. Shokina},
     title = {Numerical {Modelling} of {Dispersive} {Waves} {Generated} by {Landslide} {Motion}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {121--133},
     year = {2014},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a9/}
}
TY  - JOUR
AU  - Yu. I. Shokin
AU  - S. A. Beisel
AU  - O. I. Gusev
AU  - G. S. Khakimzyanov
AU  - L. B. Chubarov
AU  - N. Yu. Shokina
TI  - Numerical Modelling of Dispersive Waves Generated by Landslide Motion
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 121
EP  - 133
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a9/
LA  - ru
ID  - VYURU_2014_7_1_a9
ER  - 
%0 Journal Article
%A Yu. I. Shokin
%A S. A. Beisel
%A O. I. Gusev
%A G. S. Khakimzyanov
%A L. B. Chubarov
%A N. Yu. Shokina
%T Numerical Modelling of Dispersive Waves Generated by Landslide Motion
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 121-133
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a9/
%G ru
%F VYURU_2014_7_1_a9
Yu. I. Shokin; S. A. Beisel; O. I. Gusev; G. S. Khakimzyanov; L. B. Chubarov; N. Yu. Shokina. Numerical Modelling of Dispersive Waves Generated by Landslide Motion. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 121-133. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a9/

[1] C. B. Harbitz, F. Lovholt, G. Pedersen, et al., “Mechanisms of Tsunami Generation by Submarine Landslides — a Short Review”, Norwegian J. of Geology, 86:3 (2006), 255–264

[2] Yu. I. Shokin, Z. I. Fedotova, G. S. Khakimzyanov, et al., “Modelling Surfaces Waves of Generated by a Moving Landslide with Allowance for Vertical Flow Structure”, Russ. J. Numer. Anal. Math. Modelling, 22:1 (2007), 63–85 | DOI | MR | Zbl

[3] S. A. Beisel, L. B. Chubarov, G. S. Khakimzyanov, “Simulation of Surface Waves Generated by an Underwater Landslide Moving over an Uneven Slope”, Russ. J. Numer. Anal. Math. Modelling, 26:1 (2011), 17–38 | DOI | MR

[4] D. R. Tappin, P. Watts, S. T. Grilli, “The Papua New Guinea Tsunami of 17 July 1998: Anatomy of a Catastrophic Event”, Nat. Hazards Earth Syst. Sci., 8 (2008), 243–266 | DOI

[5] Eletskij S. V., Maiorov Yu. B., Maksimov V. V., Nudner I. S., Fedotova Z. I., Khazhoyan M. G., Khakimzyanov G. S., Chubarov L. B., “Simulation of Surface Waves Generation by a Moving Part of the Bottom Down the Coastal Slope”, Computational Technologies, 9 (2004), 194–206

[6] S. T. Grilli, P. Watts, “Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analyses”, J. Waterway, Port, Coastal, Ocean Eng., 131:6 (2005), 283–297 | DOI

[7] F. Enet, S. T. Grilli, “Experimental Study of Tsunami Generation by Three-Dimensional Rigid Underwater Landslides”, J. Waterway, Port, Coastal, Ocean Eng., 133:6 (2007), 442–454 | DOI

[8] E. Pelinovsky, A. Poplavsky, “Simplified Model of Tsunami Generation by Submarine Landslides”, J. Phys. Chem. Earth, 21:12 (1996), 13–17 | DOI

[9] S. T. Grilli, P. Watts, “Modeling of Waves Generated by a Moving Submerged Body: Applications to Underwater Landslides”, Eng. Anal. Boundary Elem., 23:8 (1999), 645–656 | DOI | Zbl

[10] S. A. Beisel, L. B. Chubarov, D. Dutykh, et al., “Simulation of Surface Waves Generated by an Underwater Landslide in a Bounded Reservoir”, Russ. J. Numer. Anal. Math. Modelling, 27:6 (2012), 539–558 | DOI | MR

[11] L. B. Chubarov, S. V. Eletskij, Z. I. Fedotova, G. S. Khakimzyanov, “Simulation of Surface Waves Generation by an Underwater Landslide”, Russ. . Numer. Anal. Math. Modelling, 20:5 (2005), 425–437 | DOI | MR | Zbl

[12] Fedotova Z. I., Khakimzyanov G. S., “On Analysis of Conditions for Derivation of Nonlinear-Dispersive Equations”, Computational Technologies, 17:5 (2012), 94–108

[13] Yanenko N. N., Selected Works, Nauka, M., 1991, 416 pp. | MR

[14] Roache P. J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1976, 446 pp. | MR | Zbl

[15] Khakimzyanov G. S., Yaushev I. K., “Numerical Calculation of Steady Subsonic Axisymmetric Flows of Ideal Compressible Fluid in the Channels of Complex Shape”, Proceedings of the Siberian Branch of the USSR Academy of Sciences. Ser.: Technical Sciences, 1981, no. 13, issue 3, 50–57

[16] Khakimzyanov G. S., Yaushev I. K., “Calculation of the Pressure in Stationary Problems of Ideal Fluid Dynamics”, USSR Computational Mathematics and Mathematical Physics, 24:5 (1984), 170–175 | DOI | MR

[17] Gusev O. I., “On an Algorithm for Surface Waves Calculation within the Framework of Nonlinear Dispersive Model with a Movable Bottom”, Computational Technologies, 17:5 (2012), 46–64

[18] Kuropatenko V. F., “On Finite-Difference Methods for Fluid Dynamic Equations”, Proceedings of the Steklov Mathematical Institute USSR AS, 74, no. 1, 1966, 107–137 | MR | Zbl

[19] Rozhdestvenskiy B. L., Yanenko N. N., Systems of Quasilinear Equations and Their Application to Gas Dynamics, Nauka, M., 1978, 687 pp. | MR

[20] Kuropatenko V. F., “Local Conservativeness of Difference Schemes for the Equations of Gas Dynamics”, USSR Computational Mathematics and Mathematical Physics, 25:4 (1985), 134–142 | DOI | MR

[21] Shokin Yu. I., Yanenko N. N., Method of Differential Approximation. Application to Gas Dynamics, Nauka, Novosibirsk, 1985, 364 pp. | MR | Zbl

[22] N. Yu. Shokina, “To the Problem of Construction of Difference Schemes on Movable Grids”, Russ. J. Numer. Anal. Math. Modelling, 27:6 (2012), 603–626 | DOI | MR | Zbl