Shock Wave Structure in a Mixture of Condensed Media with Different Pressures
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 104-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the problem of the structure of the shock wave in the heterogeneous mixture within the model of the mechanics of heterogeneous compressible media with different velocities, temperatures and pressures of components, using the laws of conservation of mass, momentum and energy for each phase, supplemented by kinetic equation compaction. Physical problem is reduced to the analysis of some boundary value problem for ordinary differential equation. The well-posedness of this problem was shown. This allows one to classify the types of shock waves in the mixture in the form of frozen and dispersive shock waves. Mathematical model is verified by experimental data on the shock adiabat mixture of aluminum and epoxy. The limiting conditions for the applicability of this model in describing the shock-wave experiments in a heterogeneous mixture of condensed materials are determined.
Keywords: mixture of compressible condensed media; relaxation shock wave; mathematical modeling.
@article{VYURU_2014_7_1_a8,
     author = {A. V. Fedorov},
     title = {Shock {Wave} {Structure} in a {Mixture} of {Condensed} {Media} with {Different} {Pressures}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {104--120},
     year = {2014},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a8/}
}
TY  - JOUR
AU  - A. V. Fedorov
TI  - Shock Wave Structure in a Mixture of Condensed Media with Different Pressures
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 104
EP  - 120
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a8/
LA  - ru
ID  - VYURU_2014_7_1_a8
ER  - 
%0 Journal Article
%A A. V. Fedorov
%T Shock Wave Structure in a Mixture of Condensed Media with Different Pressures
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 104-120
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a8/
%G ru
%F VYURU_2014_7_1_a8
A. V. Fedorov. Shock Wave Structure in a Mixture of Condensed Media with Different Pressures. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 104-120. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a8/

[1] Fedorov A. V., “Mathematical Description of Condensed Material Mixture under High Pressures”, Physical Gas Dynamics of Reactive Media, Nauka, Novosibirsk, 1990, 119–128

[2] Fedorov A. V., “Shock Wave Structure in a Mixture of Two Solid Bodies (Hydrodynamics Approach)”, Modelling in Mechanics, 5 (22):4 (1991), 135–158 | MR | Zbl

[3] Fedorov A. V., “The Travelling Waves Types in a Mixture of Two Solid Bodies with their Pressures”, Acoustic of Nonuniform Media, Dynamics of Continua, 100, Lavrentiev Institute of Hydrodynamics SB RAN, Novosbirsk, 1991

[4] Fedorov A. V., “Shock Wave Structure in a Heterogeneous Mixture of Two Solid Bodies with Equilibrium Pressure of Components”, Chislennye metody resheniya zadach teorii uprugosti i plastichnosti, Publishing House SB RAS, Novosibirsk, 1992, 235–249

[5] Fedorov A. V., Fedorova N. N., “Structure, Propagation, and Reflection of Shock Wave in a Mixture of two Solid Bodies (the Hydrodynamics Approach)”, Journal of Applied Mechanics and Technical Physics, 1992, no. 4, 487–494 | DOI | MR

[6] Varlamov E. V., Fedorov A. V., “Travelling Wave in the Two Velocities Nonisothermal Mixture of Two Solid Bodies”, Modelling in Mechanics, 5 (22):3 (1991), 14–26 | MR

[7] Zhilin A. A., Fedorov A. V., Fomin V. M., “The Travelling Wave in the Two Velocities Compressible Components Mixture with Different Pressures”, Doklady RAN, 350:2 (1996), 201–205 | Zbl

[8] Zhilin A. A., Fedorov A. V., “The Shock-Wave Structure in a Two-Velocity Mixture of Compressible Media with Different Pressures”, Journal of Applied Mechanics and Technical Physics, 39:2 (1998), 166–174 | DOI | MR | Zbl

[9] Zhilin A. A., Fedorov A. V., “Propagation of Shock Waves in a Two-Phase Mixture with Different Pressures of the Components”, Journal of Applied Mechanics and Technical Physics, 40:1 (1999), 46–53 | DOI | MR | Zbl

[10] Zhilin A. A., Fedorov A. V., “Reflection of Shock Waves from a Solid Boundary in a Mixture of Condensed Materials. 1: Equilibrium Approximation”, Journal of Applied Mechanics and Technical Physics, 40:5 (1999), 841–846 | DOI | MR

[11] Zhilin A. A., Fedorov A. V., “Interaction of Shock Waves with a Combined Discontinuity in Two-Phase Media. 2: Nonequilibrium Approximation”, Journal of Applied Mechanics and Technical Physics, 43:4 (2002), 519–528 | DOI | MR | Zbl

[12] Fedorov A. V., Mathematical Description of Shock Wave Structure in the Mixture of Two condensed Media, Preprint, No 3-2003, ITAM SB RAS

[13] A. V. Fedorov, I. A. Fedorchenko, I. V. Leont'ev, “Mathematical Modelling of Two Problems of Wave Dynamics in Heterogeneous Media”, Extended abstracts of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, ICDERS (Montreal, Canada, 31 July–5 August 2005), Montreal, 2005, 1–5 | Zbl

[14] Zhilin A. A., Fedorov A. V., “Interaction of Rarefaction Waves with a Finite-Thickness Layer Near a Rigid Boundary. Equilibrium Approximation”, Combustion, Explosion and Shock Waves, 43:5 (2007), 607–615 | DOI

[15] Zhilin A. A., Fedorov A. V., “Mathematical Modelling of the Interaction of Rarefaction Wave with Screening Layer”, Modern Problems of Mathematical Modelling, Proceeding, Rostov State University, Rostov-na-Donu, 2007

[16] Zhilin A. A., Fedorov A. V., “TVD Scheme Application to Calculate Two-Phases Flow with Different Components Velocities and Pressures”, Mathematical Models and Computer Simulations, 2008, no. 1, 29–47 | MR | Zbl

[17] Fedorov A. V., Fedorchenko I. A., “Interaction of a Normally Incident Shock Wave with a Porous Material Layer on a Solid Wall”, Combustion, Explosion and Shock Waves, 46:1 (2010), 89–95 | DOI | MR

[18] A. V. Fedorov, I. A. Fedorchenko, I. V. Leont'ev, “Mathematical Modeling of Two Problems of Wave Dynamics in Heterogeneous Media”, Shock Waves, 2006, no. 12, 1–8

[19] B. S. Holmes, F. K. Tsou, “Steady Shock Waves in Composite Materials”, J. Appl. Physics, 43:3 (1972), 951–961 | DOI

[20] Orlenko L. P., Materials Behavior under Intensive Dynamical Loadings, Mashinostroenie, M., 1964

[21] M. H. Walsh, R. Q. Rice, M. Queen, F. L. Yanger, “Shock-Wave Compression of Twenty-Seven Metals”, Physical Review, 108:2 (1957), 196–216 | DOI

[22] Al'tshuler L. V., Kormer S. B., Bakanova A. A., Trunin R. F., “Equation of State of Aluminum, Cuprum and Plumbum in High Pressure Domain”, Journal of Experimental and Theoretical Physics, 38:3 (1960), 790–798

[23] Borisov S. N., Nikolaevskiy V. N., Radchenko V. P., “About Shock Wave Structure in Ground”, Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 1967, no. 3, 55–63

[24] Nikolaevskij V. N., “Hydrodynamic Analysis of Shock Adiabates Heterogeneous Mixtures of Substances”, Journal of Applied Mechanics and Technical Physics, 1969, no. 3, 406–411

[25] Bogachev G. A., “Calculation of the Shock-Wave Adiabatics for Some Heterogeneous Mixtures”, Journal of Applied Mechanics and Technical Physics, 14:4 (1973), 546–542 | DOI | MR

[26] Alekseev Ju. F., Al'tshuler L. V., Krupnikova V. P., “Shock Compression of Two-Component Paraffin-Tungsten Mixtures”, Journal of Applied Mechanics and Technical Physics, 1971, no. 4, 624–627

[27] Dremin A. P., Karpuhin I. A., “Method for Determining the Shock Adiabates of Dispersed Materials”, Journal of Applied Mechanics and Technical Physics, 1960, no. 3, 184–188

[28] R. Kinslou (ed.), High-Speed Shock Phenomenones, Mir, M., 1973