The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise”
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 90-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of “white noise”, initially established in finite-dimensional spaces, has been transfered to infinite-dimensional spaces. The goal of this transition is to develop the theory of stochastic Sobolev type equations and to elaborate applications of practical value. The derivative of Nelson–Gliklikh is entered to reach this goal, as well as the spaces of “noises” are developed. The equations of Sobolev type with relatively bounded operators are considered in the spaces of differentiable “noises”. Besides, the existence and uniqueness of their classical solutions are proved. A stochastic equation of Barenblatt–Zheltov–Kochina is considered as an application in bounded domain with homogeneous boundary condition of Dirichlet and initial condition of Showalter–Sidorov.
Keywords: the Sobolev type equations; Wiener process; Nelson–Gliklikh derivative; “white noise”; space of “noise”; stochastic equation of Barenblatt–Zheltov–Kochina.
@article{VYURU_2014_7_1_a7,
     author = {G. A. Sviridyuk and N. A. Manakova},
     title = {The {Dynamical} {Models} of {Sobolev} {Type} with {Showalter{\textendash}Sidorov} {Condition} and {Additive} {{\textquotedblleft}Noise{\textquotedblright}}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {90--103},
     year = {2014},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a7/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - N. A. Manakova
TI  - The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise”
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 90
EP  - 103
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a7/
LA  - ru
ID  - VYURU_2014_7_1_a7
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A N. A. Manakova
%T The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise”
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 90-103
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a7/
%G ru
%F VYURU_2014_7_1_a7
G. A. Sviridyuk; N. A. Manakova. The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise”. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 90-103. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a7/

[1] M. Arato, Linear Stochastic Systems with Constant Coefficients. A Statistical Approach, Springer, Berlin–Heidelberg–N.-Y., 1982 | DOI | MR | Zbl

[2] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.-Y., 2011 | DOI | MR | Zbl

[3] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992 | DOI | MR | Zbl

[4] M. Kovacs, S. Larsson, “Introduction to Stochastic Partial Differential Equations”, Proceedings of «New Directions in the Mathematical and Computer Sciences» (National Universities Commission, Abuja, Nigeria, October 8–12, 2007), v. 4, ICMCS, Lagos, 2008, 159–232 | Zbl

[5] Zamyshlyaeva A. A., “Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 2012, no. 40, issue 14, 73–82 (in Russian) | MR | Zbl

[6] Zagrebina S. A., Soldatova E. A., “The Linear Sobolev-Type Equations With Relatively p-bounded Operators and Additive White Noise”, The Bulletin of Irkutsk State University. Series “Mathematics”, 6:1 (2013), 20–34 (in Russian) | Zbl

[7] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Abstract Stochastic Equations. II: Solutions in Spaces of Abstract Stochastic Distributions”, J. of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl

[8] I. V. Melnikova, A. I. Filinkov, “Generalized Solutions to Abstract Stochastic Problems”, J. Integ. Transf. and Special Funct., 20:3–4 (2009), 199–206 | DOI | MR | Zbl

[9] Shestakov A. L., Sviridyuk G. A., “On a New Conception of White Noise”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19:2 (2012), 287–288 (in Russian)

[10] Shestakov A. L., Sviridyuk G. A., “On the Measurement of the “White Noise””, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 2012, no. 27 (286), issue 13, 99–108 | Zbl

[11] Gliklikh Yu. E., “Investigation of Leontieff Type Equations with White Noise Protect by the Methods of Mean Derivatives of Stochastic Processes”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 2012, no. 27 (286), issue 13, 24–34 (in Russian) | Zbl

[12] Shestakov A. L., Sviridyuk G. A., “Optimal Measurement of Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 2011, no. 17 (234), issue 8, 70–75 | Zbl

[13] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[14] Shestakov A. L., Sviridyuk G. A., Hudyakov Yu. V., “Dynamic Measurement in Spaces of “Noise””, Bulletin of the South Ural State University. Series “Computer Technologies, Automatic Control, Radio Electronics”, 13:2 (2013), 4–11 (in Russian)

[15] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev Type Equations”, The Bulletin of Irkutsk State University. Series “Mathematics”, 3:1 (2010), 104–125 (in Russian) | MR | Zbl

[16] Kuropatenko V. F., “Mesomechanics Single-Component and Multicomponent Materials”, Physical Mesomechanics, 4:3 (2001), 49–55

[17] Kuropatenko V. F., “Momentum and Energy Exchange in Nonequilibrium Multicomponent Media”, J. of Applied Mechanics and Technical Physics, 46:1 (2005), 1–8 | DOI | Zbl

[18] Kuropatenko V. F., “New Models of Continuum Mechanics”, J. of Engineering Physics and Thermophysics, 84:1 (2011), 77–99 | DOI

[19] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, 1967 | MR

[20] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[21] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Heidelberg–Barth, 1995 | MR | MR

[22] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations, Chelyabinsk State University, Chelyabinsk, 2003, 179 pp. | MR | Zbl