@article{VYURU_2014_7_1_a4,
author = {E. I. Kraus and V. M. Fomin and I. I. Shabalin},
title = {Calculation of {Shear} {Modulus} {Behind} {Shock} {Wave}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {49--61},
year = {2014},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a4/}
}
TY - JOUR AU - E. I. Kraus AU - V. M. Fomin AU - I. I. Shabalin TI - Calculation of Shear Modulus Behind Shock Wave JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2014 SP - 49 EP - 61 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a4/ LA - ru ID - VYURU_2014_7_1_a4 ER -
%0 Journal Article %A E. I. Kraus %A V. M. Fomin %A I. I. Shabalin %T Calculation of Shear Modulus Behind Shock Wave %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2014 %P 49-61 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a4/ %G ru %F VYURU_2014_7_1_a4
E. I. Kraus; V. M. Fomin; I. I. Shabalin. Calculation of Shear Modulus Behind Shock Wave. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a4/
[1] Kraus E. I., “Few-parameter Equation of State Solid at High Energy Density”, Vestnik NGU, 2:2 (2007), 65–73
[2] Al'tshuler L. V., Kormer S. B., Brazhnik M. I., Vladimirov L. A., “Isentropic Compressibility of Aluminum, Copper, Lead And Iron at High Pressures”, Journal of Applied Mechanics and Technical Physics, 38:4 (1960), 1061–1073 | MR
[3] Vorob'ev A. A., Dremin A. N., Kanel' G. I., “The Shock Compression Ratio Dependence of the Aluminum Elastic Modulus”, Journal of Applied Mechanics and Technical Physics, 1974, no. 5, 94–100 | MR
[4] Al'tshuler L. V., Brazhnik M. I., Telegin G. S., “Strength and Elasticity of Iron and Copper at High Shock-Wave Compression Pressures”, Journal of Applied Mechanics and Technical Physics, 1971, no. 6, 159–166
[5] Al'tshuler L. V., “Application of Shock Waves in High-Pressure Physics”, Advances in Physical Sciences, 85:2 (1965), 197–258
[6] Landau L. D., Stanyukovich K. P., “On the Study of Detonation of Condensed Explosives”, Dokl. AN SSSR, 46 (1945), 399–406
[7] J. S. Dugdale, D. McDonald, “The Thermal Expansion of Solids”, Phys. Rev., 89:4 (1953), 832–851 | DOI
[8] Zubarev V. N., Vaschenko V. Ya., “About the Gruneisen Coefficient”, Soviet Physics, Solid State, 5:3 (1963), 886–891 | MR
[9] J. R. Asay, L. C. Chhabildas, G. I. Kerley, T. G. Trucano, “High Pressure Strength of Shocked Aluminum”, Shock Waves in Condensed Matter, ed. Y. M. Gupta, American Institute of Physics, N.-Y., 1985, 145–149
[10] T. Neal, “Mach Waves and Reflected Rare factions in Aluminum”, J. Appl. Phys., 46:6 (1976), 2521–2527 | DOI
[11] R. G. McQueen, J. N. Fritz, C. E. Morris, “The Velocity of Sound Behind Strong Shock Waves in 2024 Al”, Shock Waves in Condensed Matter, eds. J. R. Asay, R. A. Graham, G. K. Straub, North Holland, Amsterdam, 1984, 95–98
[12] D. Hayes, R. S. Hixson, R. G. McQueen, “High Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper”, Shock Compression of Condensed Matter, eds. Furnish M. D., Chhabildas L. C., Hixson R. S., American Institute of Physics, N.-Y., 2000, 483–488 | DOI
[13] S. P. Marsh (ed.), LASL Shock Hugoniot Data, Univ. California Press, Berkeley etc., 1980, 658 pp.
[14] A. S. Kusubov, M. van Thiel, “Measurement of Elastic and Plastic Unloading Wave Profiles in 2024-T4 Aluminum Alloy”, J. Appl. Phys., 40:9 (1969), 3776–3779 | DOI
[15] A. S. Kusubov, M. van Thiel, “Dynamic Yield Strength of 2024-T4 Aluminum at 313 kbar”, J. Appl. Phys., 40:2 (1969), 893–898 | DOI
[16] J. O. Erkman, A. B. Christensen, “Attenuation of Shock Waves in Aluminum”, J. Appl. Phys., 38:13 (1967), 5395–5403 | DOI
[17] D. Yaziv, Z. Rosenberg, Y. Partom, “Variation of the Elastic Constants of 2024-T351 Al under Dynamic Pressures”, J. Appl. Phys., 53:1 (1982), 353–355 | DOI
[18] Yu Yu-Ying et al., “Shear Modulus of Shock-Compressed LY12 Aluminum up to Melting Point”, Chinese Phys. B, 17:1 (2008), 264–269 | DOI
[19] Yu Yu-Ying et al., “Sound Velocity and Release Behavior of Shock-Compressed LY12-Al”, Chinese Phys. Lett., 22:7 (2005), 1742–1745 | DOI
[20] Glushak B. L., Novikov S. A., Bat'kov Yu. V., “Constitutive Equation for Describing High Strain Rates of Al and Mg in a Shock Wave”, Fizika Goreniya i Vzryva, 1992, no. 1, 84–89
[21] L. C. Chhabildas, J. R. Asay, “Time-Resolved Wave Profile Measurements in Copper to Megabar Pressures”, High pressure in research and industry, 8th AIRAPT Conf. (Uppsala, 1981), eds. C. M. Backman, T. Johannisson, L. Tegner, 183–189
[22] J. B. Hu, F. Q. Jing, J. X. Cheng, “Sound Velocities at High Pressures and Shock — Melting of Copper”, Chinese Journal of High Pressure Physics, 3 (1989), 187–197
[23] E. A. Kozlov, D. G. Pankratov, O. V. Tkachyov, A. K. Yakunin, “Sound Velocities and Shear Strength of Shocked U within 10–250 GPa”, Book of Abstracts «19th European Conference on Fracture» (Kazan, August 26–31, 2012), Kazan, 2012, 146
[24] Kraus E. I., “The Calculation of the Elastic Moduli of Metal Behind a Strong Shock Wave”, Vestnik NGU, 4:4 (2009), 79–90 | MR
[25] Novozhilov V. V., Theory of Elasticity, Sudprodgiz, Leningrad, 1958, 370 pp.
[26] Glushak B. L., Kuropatenko V. F., Novikov S. A., Investigation of the Strength of Materials Under Dynamic Loads, 1992, 295 pp. | MR
[27] A. E. Abey, “Effect of Hydrostatic Pressure on the Stress-Strain Curves of OFHC Copper”, J. Appl. Phys., 42:10 (1971), 4085–4088 | DOI
[28] S. R. Chen, G. T. Gray, “Constitutive Behavior of Tantalum and Tantalum-Tungsten Alloys”, Metall. Mater. Trans., 27:10 (1996), 2994–3006 | DOI
[29] D. M. Goto, J. F. Bingert, W. R. Reed, R. K. Garrett, “Anisotropy Corrected MTS Constitutive Strength Modeling in HY-100 Steel”, Scripta Mater., 42:12 (2000), 1125–1131 | DOI
[30] D. J. Steinberg, S. G. Cochran, M. W. Guinan, “A Constitutive Model for Metals Applicable at High-Strain Rate”, J. Appl. Phys., 51:3 (1980), 1498–1504 | DOI
[31] D. J. Steinberg, C. M. Lund, “A Constitutive Model for Strain Rate from $10^{-4}$ to $10^{-6}{\mathrm{s}}^{-1}$”, J. Appl. Phys., 65:4 (1989), 1528–1533 | DOI
[32] M. H. Nadal, P. Le Poac, “Continuous Model for the Shear Modulus as a Function of Pressure and Temperature up to the Melting Point: Analysis and Ultrasonic Validation”, J. Appl. Phys., 93:5 (2003), 2472–2480 | DOI
[33] L. Burakovsky, C. W. Greeff, D. L. Preston, “Analytic Model of the Shear Modulus at All Temperatures and Densities”, Phys. Rev. B, 67:9 (2003), 094107 | DOI
[34] L. Burakovsky, D. L. Preston, “Shear Modulus at All Pressures: Generalized Guinan–Steinberg Formula”, J. Phys. Chem. Solids, 67:9–10 (2006), 1930–1936 | DOI
[35] El'kin V. M., Mihaylov V. N., Mihaylova T. Yu., “Semi-Empirical Model of the Shear Modulus in a Wide Range of Temperatures and Pressures of Shock Compression”, The Physics of Metals and Metallography, 2011, 563–576
[36] Hu Jian-Bo, Yu Yu-Ying, Tan Hua, Dai Cheng-Da, “Effect of Anneal on the Release Behaviour of LY12-Al Alloy”, Chinese Phys. Lett., 23:5 (2006), 1265–1268 | DOI
[37] Jianxiang Peng, Fuqian Jing, Dahong Li, “Pressure and Temperature Dependence of Shear Modulus and Yield Strength for Aluminum, Copper, and Tungsten under Shock Compression”, J. Appl. Phys., 98:1 (2005), 013508 | DOI
[38] L. Burakovsky, D. L. Preston, “Generalized Guinan–Steinberg Formula for the Shear Modulus at All Pressures”, Phys. Rev. B, 71:18 (2005), 184118 | DOI