Formation of Ring Structures in a Drying under the Mask Film of Colloidal Solution
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 24-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author offers a method of formation of concentric ring structures out of micro- and nanoparticles on impermeable surfaces as a result of evaporation of the film of colloidal solution under a special mold. The above mentioned method is studied theoretically. A mathematical model of initial stage of process is solved numerically. The model includes the continuity equation, the motion equation and the convection–diffusion equation for the case of a system with a variable mass. Results of calculations have shown that mass fraction of particles transferred by the radial flow increases considerably in the areas set by the mask. To confirm the feasibility of the method a full-scale experiment should be carried out.
Keywords: evaporative lithography; film of colloidal solution; concentric rings; micro- and nanoparticles.
@article{VYURU_2014_7_1_a2,
     author = {K. S. Kolegov},
     title = {Formation of {Ring} {Structures} in a {Drying} under the {Mask} {Film} of {Colloidal} {Solution}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {24--33},
     year = {2014},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a2/}
}
TY  - JOUR
AU  - K. S. Kolegov
TI  - Formation of Ring Structures in a Drying under the Mask Film of Colloidal Solution
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 24
EP  - 33
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a2/
LA  - ru
ID  - VYURU_2014_7_1_a2
ER  - 
%0 Journal Article
%A K. S. Kolegov
%T Formation of Ring Structures in a Drying under the Mask Film of Colloidal Solution
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 24-33
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a2/
%G ru
%F VYURU_2014_7_1_a2
K. S. Kolegov. Formation of Ring Structures in a Drying under the Mask Film of Colloidal Solution. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 24-33. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a2/

[1] J. Xu, J. Xia, S. W. Hong, Z. Lin, F. Qiu, Y. Yang, “Self-Assembly of Gradient Concentric Rings via Solvent Evaporation from a Capillary Bridge”, Physical Review Letters, 96:6 (2006), 066104 | DOI

[2] S. S. Abramchuk, A. R. Khokhlov, T. Iwataki, H. Oana, K. Yoshikawa, “Direct Observation of DNA Molecules in a Convection Flow of a Drying Droplet”, Europhysics Letters, 55:2 (2001), 294–300 | DOI | MR

[3] P. Takhistov, H. C. Chang, “Complex Stain Morphologies”, Industrial Engineering Chemistry Research, 41:25 (2002), 6256–6269 | DOI

[4] E. Senses, M. Black, T. Cunningham, S. A. Sukhishvili, P. Akcora, “Spatial Ordering of Colloids in a Drying Aqueous Polymer Droplet”, Langmuir, 29:8 (2013), 2588–2594 | DOI

[5] V. H. Chhasatia, Y. Sun, “Interaction of Bi-dispersed Particles with Contact Line in an Evaporating Colloidal Drop”, Soft Matter, 7:21 (2011), 10135–10143 | DOI

[6] Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfimov M. V., “Self-Assembly of Nanoparticles in Microvolume of Colloidal Solution: Physics, Modeling, Experiment”, Russian nanotechnologies, 8:3–4 (2013), 5–23

[7] D. J. Harris, H. Hu, J. C. Conrad, J. A. Lewis, “Patterning Colloidal Films via Evaporative Lithography”, Physical Review Letters, 98:14 (2007), 148301 | DOI

[8] C. Parneix, P. Vandoolaeghe, V. S. Nikolayev, D. Quéré, et al., “Dips and Rims in Dried Colloidal Films”, Phys. Rev. Lett., 105:26 (2010), 266103 | DOI

[9] A. Georgiadis, A. F. Routh, M. W. Murray, J. L. Keddie, “Bespoke Periodic Topography in Hard Polymer Films by Infrared Radiation-Assisted Evaporative Lithography”, Soft Matter, 7:23 (2011), 11098–11102 | DOI

[10] J. Li, B. Cabane, M. Sztucki, J. Gummel, L. Goehring, “Drying Dip-coated Colloidal Films”, Langmuir, 28:1 (2012), 200–208 | DOI

[11] R. D. Deegan, O. Bakajin, T. F. Dupont, et al., “Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops”, Nature, 389:6653 (1997), 827–829 | DOI

[12] D. S. Chernavskii, A. A. Polezhaev, S. C. Müller, “A Model of Pattern Formation by Precipitation”, Physica D, 54:1–2 (1991), 160–170 | DOI

[13] Y. Jung, T. Kajiya, T. Yamaue, M. Doi, “Film Formation Kinetics in the Drying Process of Polymer Solution Enclosed by Bank”, Japanese Journal of Applied Physics, 48:3 (2009), 031502 | DOI

[14] B. J. Fischer, “Particle Convection in an Evaporating Colloidal Droplet”, Langmuir, 18:1 (2002), 60–67 | DOI

[15] Kolegov K. S., Lobanov A. I., “Comparing of a Quasisteady and Nonsteady Mathematical Models of Fluid Flow in Evaporating Drop”, Computer Research and Modelling, 4:4 (2012), 811–825

[16] Y. Y. Tarasevich, D. M. Pravoslavnova, “Segregation in Desiccated Sessile Drops of Biological Fluids”, The European Physical Journal E, 22:4 (2007), 311–314 | DOI