@article{VYURU_2014_7_1_a10,
author = {A. V. Keller and M. A. Sagadeeva},
title = {The {Optimal} {Measurement} {Problem} for the {Measurement} {Transducer} {Model} with a {Deterministic} {Multiplicative} {Effect} and {Inertia}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {134--138},
year = {2014},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/}
}
TY - JOUR AU - A. V. Keller AU - M. A. Sagadeeva TI - The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2014 SP - 134 EP - 138 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/ LA - ru ID - VYURU_2014_7_1_a10 ER -
%0 Journal Article %A A. V. Keller %A M. A. Sagadeeva %T The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2014 %P 134-138 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/ %G ru %F VYURU_2014_7_1_a10
A. V. Keller; M. A. Sagadeeva. The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 134-138. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/
[1] Kuropatenko V. F., Andreev Yu. N., “Simulation of Dynamic Processes in Spherical and Cylindrical Shells”, Computational Continuum Mechanics, 3:4 (2010), 53–67
[2] Shestakov A. L., “Dynamic Error Correction Transducer Linear Filter-based Sensor Model”, Izvestiya VUZ. Priborostroenie, 34:4 (1991), 8–13 | MR
[3] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measuring Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 2010, no. 16 (192), issue 5, 116–120 | Zbl
[4] Keller A. V., Nazarova E. I., “Optimal Measuring Problem: the Computation Solution, the Program Algorithm”, The Bulletin of Irkutsk State University. Series “Mathematics”, 4:3 (2011), 74–82 | Zbl
[5] Sviridyuk G. A., Brychev S. V., “Numerical solution of Leontiev type systems”, Russian Mathematics, 2003, no. 8, 46–52 | MR | Zbl
[6] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev Type Equations”, The Bulletin of Irkutsk State University. Series “Mathematics”, 3:1 (2010), 133–137 | MR | Zbl
[7] Sagadeeva M. A., Investigation of Solutions Stability for Linear Sobolev Type Equations, dis. ... kand. fiz.-mat. nauk, Chelyabinsk, 2006
[8] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[9] Sagadeeva M. A., Badoyan A. D., “The Optimal Control over Solutions of Special Form of Nonstacionary Sobolev Type Equations in Relatively Spectral Case”, Bulletin of Magnitogorsk State University. Mathematics, 2013, no. 15, 68–80
[10] Keller A. V., Sagadeeva M. A., “The Numerical Solution of Optimal and Hard Control for Nonstationary System of Leontiev Type”, Belgorod State University Scientific Bulletin. Mathematics Physics, 32:19 (2013), 57–66