The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 134-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of the theory of Sobolev-type equations are extensively used to measure of dynamically distorted signals recently. In this paper the authors consider the optimal measurement for the system where the well-known multiplicative effect was produced which in its turn has the form of a scalar function of the variable $t$. The authors develop the exact and approximate solutions of the optimal measurement problem for the specified system. The paper consists of two parts. The statement of the problem is formulated in the first part as an optimal measurement for the system with a deterministic multiplicative effect, and the second part presents the formulas of exact and approximate solutions of the problem.
Keywords: optimal measurement; Leontiev type system; Shestakov–Sviridyuk model.
@article{VYURU_2014_7_1_a10,
     author = {A. V. Keller and M. A. Sagadeeva},
     title = {The {Optimal} {Measurement} {Problem} for the {Measurement} {Transducer} {Model} with a {Deterministic} {Multiplicative} {Effect} and {Inertia}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {134--138},
     year = {2014},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/}
}
TY  - JOUR
AU  - A. V. Keller
AU  - M. A. Sagadeeva
TI  - The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 134
EP  - 138
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/
LA  - ru
ID  - VYURU_2014_7_1_a10
ER  - 
%0 Journal Article
%A A. V. Keller
%A M. A. Sagadeeva
%T The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 134-138
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/
%G ru
%F VYURU_2014_7_1_a10
A. V. Keller; M. A. Sagadeeva. The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 134-138. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a10/

[1] Kuropatenko V. F., Andreev Yu. N., “Simulation of Dynamic Processes in Spherical and Cylindrical Shells”, Computational Continuum Mechanics, 3:4 (2010), 53–67

[2] Shestakov A. L., “Dynamic Error Correction Transducer Linear Filter-based Sensor Model”, Izvestiya VUZ. Priborostroenie, 34:4 (1991), 8–13 | MR

[3] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measuring Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 2010, no. 16 (192), issue 5, 116–120 | Zbl

[4] Keller A. V., Nazarova E. I., “Optimal Measuring Problem: the Computation Solution, the Program Algorithm”, The Bulletin of Irkutsk State University. Series “Mathematics”, 4:3 (2011), 74–82 | Zbl

[5] Sviridyuk G. A., Brychev S. V., “Numerical solution of Leontiev type systems”, Russian Mathematics, 2003, no. 8, 46–52 | MR | Zbl

[6] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev Type Equations”, The Bulletin of Irkutsk State University. Series “Mathematics”, 3:1 (2010), 133–137 | MR | Zbl

[7] Sagadeeva M. A., Investigation of Solutions Stability for Linear Sobolev Type Equations, dis. ... kand. fiz.-mat. nauk, Chelyabinsk, 2006

[8] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[9] Sagadeeva M. A., Badoyan A. D., “The Optimal Control over Solutions of Special Form of Nonstacionary Sobolev Type Equations in Relatively Spectral Case”, Bulletin of Magnitogorsk State University. Mathematics, 2013, no. 15, 68–80

[10] Keller A. V., Sagadeeva M. A., “The Numerical Solution of Optimal and Hard Control for Nonstationary System of Leontiev Type”, Belgorod State University Scientific Bulletin. Mathematics Physics, 32:19 (2013), 57–66