Mathematical Modelling of Finding the Values of Eigenfunctions for the Electrical Oscillations in the Extended Line Problem Using the Method of Regularized Traces
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 3, pp. 125-129
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper describes a new numerical method for computing the values of the eigenfunctions of perturbed self-adjoint operators. The new method is based on the method of regularized traces. A mathematical model for calculating the eigenfunction values of the spectral problem concerning electrical oscillations in the extended line is developed. The elaborated algorithms make it possible to calculate the values of the eigenfunction of the perturbed operator whether the previous values are known or not. We've obtained the estimates of functional series residual sum «suspended» the corrections of the perturbation theory of perturbed self-adjoint operators, and proved their convergence. Effective algorithms for finding «suspended» perturbation theory corrections are discovered for the numerical implementation of the method. The numerical experiments on the calculation of the values of a problem on its own electrical oscillations in the extended lines show that the method is consistent with the other well-known methods of A. N. Krylov and A. M. Danilevsky. The method of regularized traces proved its reliability and high efficiency.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Sturm–Liouville problem
Keywords: eigenvalues, eigenfunctions, perturbation theory, the method of regularized traces.
                    
                  
                
                
                Keywords: eigenvalues, eigenfunctions, perturbation theory, the method of regularized traces.
@article{VYURU_2013_6_3_a12,
     author = {S. N. Kakushkin},
     title = {Mathematical {Modelling} of {Finding} the {Values} of {Eigenfunctions} for the {Electrical} {Oscillations} in the {Extended} {Line} {Problem} {Using} the {Method} of {Regularized} {Traces}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {125--129},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a12/}
}
                      
                      
                    TY - JOUR AU - S. N. Kakushkin TI - Mathematical Modelling of Finding the Values of Eigenfunctions for the Electrical Oscillations in the Extended Line Problem Using the Method of Regularized Traces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 125 EP - 129 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a12/ LA - ru ID - VYURU_2013_6_3_a12 ER -
%0 Journal Article %A S. N. Kakushkin %T Mathematical Modelling of Finding the Values of Eigenfunctions for the Electrical Oscillations in the Extended Line Problem Using the Method of Regularized Traces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 125-129 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a12/ %G ru %F VYURU_2013_6_3_a12
S. N. Kakushkin. Mathematical Modelling of Finding the Values of Eigenfunctions for the Electrical Oscillations in the Extended Line Problem Using the Method of Regularized Traces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 3, pp. 125-129. http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a12/
