Complexity of parallel image rendering strategies for visualisation systems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 87-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper discusses various strategies of parallel images and video sequences rendering on supercomputers for scientific data visualization. Their computational complexity is analyzed. Estimations of efficiency and scalability of the strategies for various input parameters of the problem are represented. Practical testing of proposed method was charged on a supercomputer BlueGene/P.
Mots-clés : visualisation
Keywords: supercomputers, parallel image rendering, complexity evaluation.
@article{VYURU_2011_9_a8,
     author = {O. V. Dzhosan},
     title = {Complexity of parallel image rendering strategies for visualisation systems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {87--97},
     year = {2011},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_9_a8/}
}
TY  - JOUR
AU  - O. V. Dzhosan
TI  - Complexity of parallel image rendering strategies for visualisation systems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 87
EP  - 97
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_9_a8/
LA  - ru
ID  - VYURU_2011_9_a8
ER  - 
%0 Journal Article
%A O. V. Dzhosan
%T Complexity of parallel image rendering strategies for visualisation systems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 87-97
%N 9
%U http://geodesic.mathdoc.fr/item/VYURU_2011_9_a8/
%G ru
%F VYURU_2011_9_a8
O. V. Dzhosan. Complexity of parallel image rendering strategies for visualisation systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 87-97. http://geodesic.mathdoc.fr/item/VYURU_2011_9_a8/

[1] J. Götz, K. Iglberger, M. Stürmer, U. Rüde, “Direct Numerical Simulation of Particulate Flows on 294912 Processor Cores”, Proc. Conf. High Performance Computing, Networking, Storage and Analysis (Washington, DC, USA, 2010), 1–11

[2] The SciDAC Ultra-Scale Visualization Institute (data obrascheniya: 10.01.2011) http://vis.cs.ucdavis.edu/Ultravis/datasets/

[3] Survey of Parallel Volume Rendering Algorithms (data obrascheniya: 10.01.2011) http://www.hpl.hp.com/research/mmsl/presentations/3d/pdpta98.pdf

[4] C. Mueller, “The sort-first rendering architecture for high-performance graphics”, ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH Asia '08, N.Y., USA, 2008, Article 36, 75–84, 11 pages pp.

[5] T. W. Crockett, T. Orloff, “A MIMD rendering algorithm for distributed memory architectures”, Proceedings of the symposium on Parallel rendering (San Jose, California, USA, 1993), 35–42

[6] R. Pajarola, “Cluster parallel rendering”, ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH Asia '08, N.Y., USA, 2008, Article 34, 434–452, 12 pages pp.

[7] K. M. Martin, B. Geveci, J. Ahrens, C. Law, “Large Scale Data Visualization Using Parallel Data Streaming”, IEEE Comput. Graph. Appl., 21 (2001), 34–41

[8] B. C. Berkant, A. Cevdet, “Hypergraph-Partitioning-Based Remapping Models for Image-Space-Parallel Direct Volume Rendering of Unstructured Grids”, IEEE Trans. Parallel Distrib. Syst., 18 (2007), 3–16 | DOI

[9] B. Moloney, M. Ament, D. Weiskopf, T. Möller, “Sort First Parallel Volume Rendering”, IEEE Transactions on Visualization and Computer Graphics, 9 (2010), 1504–1515

[10] V. Finkbeiner, A. Entezari, D. Van De Ville, T. Möller, “Efficient volume rendering on the body centered cubic lattice using box splines”, Computers and Graphics, 34:4 (2010), 409–423 | DOI

[11] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre, “Remote Large Data Visualization in the ParaView Framework”, Eurographics Parallel Graphics and Visualization, 3, eds. A. Heirich, B. Raffin, L. P. Santos, 2006, 162–170

[12] K. Moreland, L. Avila, Lee Ann Fisk, “Parallel Unstructured Volume Rendering in ParaView”, Visualization and Data Analysis 2007, Proceedings of SPIE-IST Electronic Imaging, 6495, 2007, 1–12

[13] A. Foulks, R. D. Bergeron, “Uncertainty visualization in the VisIt visualization environment”, Proceedings Visualization and Data Analysis, 7243 (2009), 121–132

[14] VisIt, Visualization Tool (data obrascheniya: 10.01.2011) https://wci.llnl.gov/codes/visit/

[15] Moreland K., IceT Users' Guide and Reference, Tech Report SAND 2009-3170, June 2009

[16] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, R. Thakur, “A configurable algorithm for parallel image-compositing applications”, Proc. Conf. High Performance Computing Networking, Storage and Analysis, N. Y., USA, 2009, Article 4, 1–21, 10 pages pp. | DOI

[17] T. Porter, T. Duff, “Compositing digital images”, SIGGRAPH Comput. Graph., 18 (1984), 253–259 | DOI

[18] K. Moreland, B. Wylie, C. Pavlakos, “Sort-last parallel rendering for viewing extremely large data sets on tile displays”, Proceedings of the IEEE 2001 symposium on parallel and large-data visualization and graphics, IEEE Press, Piscataway, USA, 2001, 85–92 | DOI

[19] K.-L. Ma, J. S. Painter, C. D. Hansen, M. F. Krogh, “Parallel volume rendering using binary-swap compositing”, IEEE Computer Graphics and Applications, 14:4 (1994), 59–68 | DOI

[20] H. Yu, C. Wang, K.-L. Ma, “Massively parallel volume rendering using 2-3 swap image compositing”, Proc. Sonf. Supercomputing, IEEE Press, Piscataway, USA, 2008, 1–11

[21] T.-Y. Lee, C. S. Raghavendra, J. B. Nicholas, “Image composition schemes for sort-last polygon rendering on 2d mesh multicomputers”, IEEE Transactions on Visualization and Computer Graphics, 2:3 (1996), 202–217 | DOI

[22] C. F. Lin, S. K. Liao, Y. C. Chung, “A rotate-tiling image compositing method for sort-last parallel volume rendering systems on distributed memory multicomputers”, J. of Information Science and Engineering, 17 (2004), 643–664

[23] J. Nonaka, K. Ono, H. Miyachi, “Theoretical and Practical Performance and Scalability Analyses of Binary-Swap image Composition Method on IBM Blue Gene/L”, The 1st International Workshop on Super Visualization (IWSV) (June 7, 2008, Kos Is., Greece), Kos, 2008, 64–86

[24] A. Takeuchi, F. Ino, K. Hagihara, “An improved binary-swap compositing for sort-last parallel rendering on distributed memory multiprocessors”, Parallel Comput., 29:11–12 (2003), 1745–1762 | DOI

[25] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, R. Thakur, “A Configurable Algorithm for Parallel Image-Compositing Applications”, Proc. Conf. High Performance Computing, Networking, Storage, and Analysis (Portland, Oregon, USA, 2009); Preprint ANL/MCS-P1624-0509, May 2009

[26] O. V. Dzhosan, A. B. Murynin, N. N. Popova, “Metod vizualizatsii mnogomernykh dinamicheskikh dannykh na mnogoprotsessornykh kompleksakh”, Vestn. kompyuter. i inform. tekhnologii, 2009, no. 8, 8–12

[27] A. A. Korzh, D. V. Makagon, “Otsenka minimalnykh trebovanii k apparature i topologii pri postroenii vysokoskorostnykh kommunikatsionnykh setei dlya superkompyuterov s obschei pamyatyu”, Vychislit. metody i programmirovanie: novye vychislit. tekhnologii, 9:2 (2008), 26–31 | MR