About the approximate solution of the inverse problem of the spectral analysis for Laplace operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 73-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give the sufficient conditions imposed on a sequence of complex numbers for which there exists such pertubatied Laplace operator, that its spectrum is equal to the given sequence. The algorithm for the approximate finding of the pertubation operator is given.
Keywords: Laplace operator, operator of trace class, spectrum, trace, eigenvalue.
Mots-clés : perturbation
@article{VYURU_2010_5_a9,
     author = {A. I. Sedov},
     title = {About the approximate solution of the inverse problem of the spectral analysis for {Laplace} operator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {73--78},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a9/}
}
TY  - JOUR
AU  - A. I. Sedov
TI  - About the approximate solution of the inverse problem of the spectral analysis for Laplace operator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 73
EP  - 78
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a9/
LA  - ru
ID  - VYURU_2010_5_a9
ER  - 
%0 Journal Article
%A A. I. Sedov
%T About the approximate solution of the inverse problem of the spectral analysis for Laplace operator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 73-78
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a9/
%G ru
%F VYURU_2010_5_a9
A. I. Sedov. About the approximate solution of the inverse problem of the spectral analysis for Laplace operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 73-78. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a9/

[1] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo SGPI, Saratov, 2001

[2] V. V. Dubrovskii, A. V. Nagornyi, “K obratnoi zadache dlya operatora Laplasa s nepreryvnym potentsialom”, Differents. uravneniya, 26:9 (1990), 1563–1567 | MR

[3] V. V. Dubrovskii, A. V. Nagornyi, “Ustoichivost resheniya obratnykh zadach spektralnogo analiza”, Differents. uravneniya, 28:5 (1992), 839–843 | MR | Zbl

[4] V. V. Dubrovskii, A. V. Nagornyi, “Obratnaya zadacha dlya stepeni operatora Laplasa s potentsialom iz $L^2$”, Differents. uravneniya, 28:9 (1992), 1552–1561 | MR | Zbl

[5] V. V. Dubrovskii, “Teorema suschestvovaniya v obratnoi zadache spektralnogo analiza”, Differents. uravneniya, 33:12 (1997), 1702–1703 | MR | Zbl

[6] V. V. Dubrovskii, A. S. Velikikh, “Teorema o suschestvovanii resheniya obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa”, Elektromagnitnye volny i elektronnye sistemy, 3:5 (1998), 6–9

[7] V. V. Dubrovskii, “Obratnaya zadacha spektralnogo analiza i interpolyatsiya po L. Karlesonu”, Matematicheskie zametki, 70:3 (2001), 468–471 | DOI | MR | Zbl

[8] V. A. Sadovnichii, V. V. Dubrovskii, E. A. Puzankova, “Ob obratnoi zadache spektralnogo analiza dlya stepeni operatora Laplasa s potentsialom”, DAN, 367:3 (1999), 307–309 | MR | Zbl

[9] V. A. Sadovnichii, V. V. Dubrovskii, E. A. Puzankova, “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa na pryamougolnike”, Differents. uravneniya, 36:12 (2000), 1695–1698 | MR | Zbl

[10] A. I. Sedov, V. V. Dubrovskii (ml.), “Obratnaya zadacha spektralnogo analiza dlya odnogo differentsialnogo operatora v chastnykh proizvodnykh s neyadernoi rezolventoi”, Elektromagnitnye volny i elektronnye sistemy, 10:1–2 (2005), 1–8

[11] A. I. Sedov, G. A. Zakirova, “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa na ravnobedrennom pryamougolnom treugolnike”, Vestn. SamGU. Estestvenno-nauch. ser., 2(61) (2008), 34–42

[12] V. A. Sadovnichii, V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, “Vychislenie pervykh sobstvennykh chisel diskretnogo operatora”, Elektromagnitnye volny i elektronnye sistemy, 3:2 (1998), 6–8