@article{VYURU_2010_5_a5,
author = {O. P. Matveeva},
title = {Quasistationary trajectories of the {Taylor} problem for the model of the incompressible viscoelastic liquid of the nonzero order},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {39--47},
year = {2010},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/}
}
TY - JOUR AU - O. P. Matveeva TI - Quasistationary trajectories of the Taylor problem for the model of the incompressible viscoelastic liquid of the nonzero order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2010 SP - 39 EP - 47 IS - 5 UR - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/ LA - ru ID - VYURU_2010_5_a5 ER -
%0 Journal Article %A O. P. Matveeva %T Quasistationary trajectories of the Taylor problem for the model of the incompressible viscoelastic liquid of the nonzero order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2010 %P 39-47 %N 5 %U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/ %G ru %F VYURU_2010_5_a5
O. P. Matveeva. Quasistationary trajectories of the Taylor problem for the model of the incompressible viscoelastic liquid of the nonzero order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 39-47. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/
[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. mat. in-ta AN SSSR, 179, 1988, 126–164 | MR
[2] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR
[3] G. A. Sviridyuk, T. G. Sukacheva, “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. mat. zhurn., 31:5 (1990), 109–119
[4] T. G. Sukacheva, “Ob odnoi modeli dvizheniya neszhimaemoi vyazkouprugoi zhidkosti Kelvina–Foigta nenulevogo poryadka”, Differents. uravneniya, 33:4 (1997), 552–557 | MR | Zbl
[5] T. G. Sukacheva, Issledovanie matematicheskikh modelei neszhimaemykh vyazkouprugikh zhidkostei, Dis. ... d-ra fiz.-mat. nauk, Novgorod. gos. un-t, Velikii Novgorod, 2004, 249 pp.
[6] G. A. Sviridyuk, T. G. Sukacheva, “Nekotorye matematicheskie zadachi dinamiki vyazkouprugikh neszhimaemykh sred”, Vestn. MaGU, 2005, no. 8, 5–33