Quasistationary trajectories of the Taylor problem for the model of the incompressible viscoelastic liquid of the nonzero order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 39-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Taylor's problem for the model of the dynamics of the Kelvin–Voight incompressible viscoelastic liquid of the nonzero order is considered. This problem is investigated in the frames of the theory of the semilinear Sobolev type equations. The theorem of the existence of the unique solution of this problem is proved and the description of its phase space is received.
Keywords: equation of Sobolev type, phase space, an incompressible viscoelastic liquid.
@article{VYURU_2010_5_a5,
     author = {O. P. Matveeva},
     title = {Quasistationary trajectories of the {Taylor} problem for the model of the incompressible viscoelastic liquid of the nonzero order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {39--47},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/}
}
TY  - JOUR
AU  - O. P. Matveeva
TI  - Quasistationary trajectories of the Taylor problem for the model of the incompressible viscoelastic liquid of the nonzero order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 39
EP  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/
LA  - ru
ID  - VYURU_2010_5_a5
ER  - 
%0 Journal Article
%A O. P. Matveeva
%T Quasistationary trajectories of the Taylor problem for the model of the incompressible viscoelastic liquid of the nonzero order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 39-47
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/
%G ru
%F VYURU_2010_5_a5
O. P. Matveeva. Quasistationary trajectories of the Taylor problem for the model of the incompressible viscoelastic liquid of the nonzero order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 39-47. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a5/

[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. mat. in-ta AN SSSR, 179, 1988, 126–164 | MR

[2] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR

[3] G. A. Sviridyuk, T. G. Sukacheva, “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. mat. zhurn., 31:5 (1990), 109–119

[4] T. G. Sukacheva, “Ob odnoi modeli dvizheniya neszhimaemoi vyazkouprugoi zhidkosti Kelvina–Foigta nenulevogo poryadka”, Differents. uravneniya, 33:4 (1997), 552–557 | MR | Zbl

[5] T. G. Sukacheva, Issledovanie matematicheskikh modelei neszhimaemykh vyazkouprugikh zhidkostei, Dis. ... d-ra fiz.-mat. nauk, Novgorod. gos. un-t, Velikii Novgorod, 2004, 249 pp.

[6] G. A. Sviridyuk, T. G. Sukacheva, “Nekotorye matematicheskie zadachi dinamiki vyazkouprugikh neszhimaemykh sred”, Vestn. MaGU, 2005, no. 8, 5–33