@article{VYURU_2010_5_a4,
author = {A. V. Keller and E. I. Nazarova},
title = {The regularization property and the computational solution of the dynamic measure problem},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {32--38},
year = {2010},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/}
}
TY - JOUR AU - A. V. Keller AU - E. I. Nazarova TI - The regularization property and the computational solution of the dynamic measure problem JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2010 SP - 32 EP - 38 IS - 5 UR - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/ LA - ru ID - VYURU_2010_5_a4 ER -
%0 Journal Article %A A. V. Keller %A E. I. Nazarova %T The regularization property and the computational solution of the dynamic measure problem %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2010 %P 32-38 %N 5 %U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/ %G ru %F VYURU_2010_5_a4
A. V. Keller; E. I. Nazarova. The regularization property and the computational solution of the dynamic measure problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 32-38. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/
[1] M. N. Bizyaev, “Dinamicheskie modeli i algoritmy vosstanovleniya dinamicheski iskazhennykh signalov izmeritelnykh sistem v skolzyaschem rezhime”, Dis. ... kand. tekh. nauk, YuUrGU, Chelyabinsk, 2004
[2] F. R. Gantmakher, Teoriya matrits, 4-e izdanie, Nauka, M., 1988 | MR | Zbl
[3] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28
[4] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Vychislitelnye tekhnologii, 8:3 (2003), 45–54 | MR
[5] A. V. Keller, “Algoritm chislennogo resheniya zadachi Shouoltera–Sidorova dlya sistem leontevskogo tipa”, Metody optimizatsii i ikh prilozheniya, Trudy XIV Baikalskoi shkoly-seminara (Irkutsk–Severobaikalsk, 2008), 343–350
[6] G. A. Sviridyuk, A. V. Keller, “Invariantnye prostranstva i dikhotomii reshenii odnogo klassa lineinykh uravnenii sobolevskogo tipa”, Izv. vuzov. Matematika, 1997, no. 5, 60–68 | MR
[7] A. V. Keller, “Ob optimalnom upravlenii sistemami leonteskogo tipa”, Optimizatsiya, upravlenie, intellekt, 2006, no. 1(12), 82–89
[8] A. V. Keller, E. I. Nazarova, “Ob ustoichivosti reshenii sistem leonevskogo tipa”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina-2010, Tez. dokl. (Voronezh, 2010), 78–79
[9] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differents. uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl
[10] A. V. Keller, E. I. Nazarova, “Svoistvo regulyarizuemosti izmeritelnogo ustroistva i nakhozhdenie dinamicheski iskazhennykh signalov”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 16(192):5 (2010), 32–38 | Zbl
[11] A. L. Shestakov, G. A. Sviridyuk, E. V. Zakharova, “Dinamicheskie izmerenie kak zadacha optimalnogo upravleniya”, Obozrenie prikl. i prom. matematiki, 16:4 (2009), 732–733
[12] A. L. Shestakov, “Dinamicheskaya tochnost izmeritelnogo preobrazovatelya s korrektiruyuschim ustroistvom v vide modeli datchika”, Metrologiya, 1987, no. 2, 26–34
[13] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Koln–Tokyo, 2003 | MR | Zbl