The regularization property and the computational solution of the dynamic measure problem
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 32-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Of concern is the problem of the dynamically deformated signal recovery. We work up the computational algorithm for the solution of the Showalter–Sidorov problem, give the computational solution for the concrete model with the regularization property.
Keywords: the Showalter–Sidorov problem, the model of measuring device, the regularization property, the Rausse–Gourviz criterion, the computational solution.
@article{VYURU_2010_5_a4,
     author = {A. V. Keller and E. I. Nazarova},
     title = {The regularization property and the computational solution of the dynamic measure problem},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {32--38},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/}
}
TY  - JOUR
AU  - A. V. Keller
AU  - E. I. Nazarova
TI  - The regularization property and the computational solution of the dynamic measure problem
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 32
EP  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/
LA  - ru
ID  - VYURU_2010_5_a4
ER  - 
%0 Journal Article
%A A. V. Keller
%A E. I. Nazarova
%T The regularization property and the computational solution of the dynamic measure problem
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 32-38
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/
%G ru
%F VYURU_2010_5_a4
A. V. Keller; E. I. Nazarova. The regularization property and the computational solution of the dynamic measure problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 32-38. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a4/

[1] M. N. Bizyaev, “Dinamicheskie modeli i algoritmy vosstanovleniya dinamicheski iskazhennykh signalov izmeritelnykh sistem v skolzyaschem rezhime”, Dis. ... kand. tekh. nauk, YuUrGU, Chelyabinsk, 2004

[2] F. R. Gantmakher, Teoriya matrits, 4-e izdanie, Nauka, M., 1988 | MR | Zbl

[3] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28

[4] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Vychislitelnye tekhnologii, 8:3 (2003), 45–54 | MR

[5] A. V. Keller, “Algoritm chislennogo resheniya zadachi Shouoltera–Sidorova dlya sistem leontevskogo tipa”, Metody optimizatsii i ikh prilozheniya, Trudy XIV Baikalskoi shkoly-seminara (Irkutsk–Severobaikalsk, 2008), 343–350

[6] G. A. Sviridyuk, A. V. Keller, “Invariantnye prostranstva i dikhotomii reshenii odnogo klassa lineinykh uravnenii sobolevskogo tipa”, Izv. vuzov. Matematika, 1997, no. 5, 60–68 | MR

[7] A. V. Keller, “Ob optimalnom upravlenii sistemami leonteskogo tipa”, Optimizatsiya, upravlenie, intellekt, 2006, no. 1(12), 82–89

[8] A. V. Keller, E. I. Nazarova, “Ob ustoichivosti reshenii sistem leonevskogo tipa”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina-2010, Tez. dokl. (Voronezh, 2010), 78–79

[9] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differents. uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl

[10] A. V. Keller, E. I. Nazarova, “Svoistvo regulyarizuemosti izmeritelnogo ustroistva i nakhozhdenie dinamicheski iskazhennykh signalov”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 16(192):5 (2010), 32–38 | Zbl

[11] A. L. Shestakov, G. A. Sviridyuk, E. V. Zakharova, “Dinamicheskie izmerenie kak zadacha optimalnogo upravleniya”, Obozrenie prikl. i prom. matematiki, 16:4 (2009), 732–733

[12] A. L. Shestakov, “Dinamicheskaya tochnost izmeritelnogo preobrazovatelya s korrektiruyuschim ustroistvom v vide modeli datchika”, Metrologiya, 1987, no. 2, 26–34

[13] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Koln–Tokyo, 2003 | MR | Zbl