The initial-finish value problem for the Boussinesq–Löve equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 23-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the initial-finish value problem for the Boussinesq–Löve equation by reducing it to the initial-finish value problem for the Sobolev type equation of the second order. We obtain theorems about the unique solvability of such problems.
Keywords: the Sobolev type equations, the phase space, the $M,N$-functions, the differential equations defined on graphs,the initial-finish value problem.
@article{VYURU_2010_5_a3,
     author = {A. A. Zamyshlyaeva and A. V. Yuzeeva},
     title = {The initial-finish value problem for the {Boussinesq{\textendash}L\"ove} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {23--31},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a3/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - A. V. Yuzeeva
TI  - The initial-finish value problem for the Boussinesq–Löve equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 23
EP  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a3/
LA  - ru
ID  - VYURU_2010_5_a3
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A A. V. Yuzeeva
%T The initial-finish value problem for the Boussinesq–Löve equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 23-31
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a3/
%G ru
%F VYURU_2010_5_a3
A. A. Zamyshlyaeva; A. V. Yuzeeva. The initial-finish value problem for the Boussinesq–Löve equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 23-31. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a3/

[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[2] A. V. Keller, “Chislennoe reshenie zadachi startovogo upravleniya dlya sistemy uravnenii leontevskogo tipa”, Obozrenie priklad. i prom. matematiki, 16:2 (2009), 345–346

[3] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differents. uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl

[4] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28

[5] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislit. tekhnologii, 8:4 (2003), 45–54 | MR