Keywords: Oskolkov system of equations, relatively $p$-sectorial operator, extended phase space.
@article{VYURU_2010_5_a11,
author = {T. G. Sukacheva},
title = {The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {83--93},
year = {2010},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/}
}
TY - JOUR AU - T. G. Sukacheva TI - The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2010 SP - 83 EP - 93 IS - 5 UR - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/ LA - ru ID - VYURU_2010_5_a11 ER -
%0 Journal Article %A T. G. Sukacheva %T The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2010 %P 83-93 %N 5 %U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/ %G ru %F VYURU_2010_5_a11
T. G. Sukacheva. The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 83-93. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/
[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. in-ta matematiki AN SSSR, 179, 1988, 126–164 | MR
[2] A. P. Oskolkov, “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S. L. Soboleva”, Zapiski nauch. seminarov LOMI, 198, 1991, 31–48 | Zbl
[3] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi matem. nauk, 49:4 (1994), 47–74 | MR | Zbl
[4] A. P. Oskolkov, “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauch. seminarov LOMI AN SSSR, 59, 1976, 133–177 | Zbl
[5] A. P. Oskolkov, “K teorii zhidkostei Foigta”, Zap. nauch. seminarov LOMI, 96, 1980, 233–236 | MR | Zbl
[6] G. A. Sviridyuk, “Razreshimost zadachi termokonvektsii vyazkouprugoi neszhimaemoi zhidkosti”, Izv. vuzov. Matematika, 1990, no. 12, 65–70 | MR
[7] G. A. Sviridyuk, “Fazovye prostranstva polulineinykh uravnenii tipa Soboleva s otnositelno silno sektorialnym operatorom”, Algebra i analiz, 6:5 (1994), 216–237
[8] T. G. Sukacheva, Issledovanie matematicheskikh modelei neszhimaemykh vyazkouprugikh zhidkostei, Dis. ... d-ra fiz.-mat. nauk, Novgorod. gos. un-t, Velikii Novgorod, 2004, 249 pp.
[9] T. G. Sukacheva, “Nestatsionarnaya linearizovannaya model dvizheniya neszhimaemoi vyazkouprugoi zhidkosti”, Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 20 (158):11 (2009), 77–83
[10] T. G. Sukacheva, “Nestatsionarnaya linearizovannaya model dvizheniya neszhimaemoi vyazkouprugoi zhidkosti vysokogo poryadka”, Vestn. YuUrGU. Ser. «Matematicheskoe modelirovanie i programmirovanie», 17 (150):3 (2009), 86–93 | Zbl
[11] G. A. Sviridyuk, V. E. Fedorov, Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003, 179 pp. | MR | Zbl
[12] G. A. Sviridyuk, “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Ser. matematika, 57:3 (1993), 192–207 | Zbl
[13] H. A. Levine, “Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[14] G. A. Sviridyuk, T. G. Sukacheva, “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zhurn., 31:5 (1990), 109–119
[15] G. A. Sviridyuk, T. G. Sukacheva, “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl
[16] G. A. Sviridyuk, T. G. Sukacheva, “Nekotorye matematicheskie zadachi dinamiki vyazkouprugikh neszhimaemykh sred”, Vestn. MaGU. Matematika, 2005, no. 8, 5–33
[17] Yu. G. Borisovich, V. G. Zvyagin, Yu. I. Sapronov, “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Uspekhi matem. nauk, 32:4 (1977), 3–54 | MR
[18] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla, Mir, M., 1980, 368 pp.
[19] T. A. Bokareva, Issledovanie fazovykh prostranstv uravnenii tipa Soboleva s otnositelno sektorialnymi operatorami, Dis. ... kand. fiz.-mat. nauk, Sankt-Peterburg, 1993, 107 pp.
[20] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Izd. 2, Nauka, M., 1970, 288 pp. | MR
[21] G. A. Sviridyuk, “Ob odnoi modeli slaboszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matem., 1994, no. 1, 62–70 | MR
[22] G. A. Sviridyuk, “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennym operatorom”, DAN SSSR, 318:4 (1991), 828–831 | Zbl
[23] G. A. Sviridyuk, “Polulineinye uravneniya tipa Soboleva s otnositelno sektorialnymi operatorami”, Dokl. RAN, 329:3 (1993), 274–277
[24] G. A. Sviridyuk, V. E. Fedorov, “Analiticheskie polugruppy s yadrami i lineinye uravneniya tipa Soboleva”, Sib. matem. zhurn., 36:5 (1995), 1130–1145 | MR | Zbl
[25] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR