The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 83-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy–Dirichlet problem for the hybrid of linearizied Oskolkov system and heat equation in the approximation of Oberbek–Bussinesq modeling thermoconvection of incompressible viscoelastic fluid is considered. This problem is investigated on the base of the theory of relatively $p$-sectorial operators and degenerate semigroups of operators. The theorem of existence of the unique solution of this problem is proved and the description of its extended phase space is received.
Mots-clés : Sobolev type equation, an incompressible viscoelastic fluuid
Keywords: Oskolkov system of equations, relatively $p$-sectorial operator, extended phase space.
@article{VYURU_2010_5_a11,
     author = {T. G. Sukacheva},
     title = {The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {83--93},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/}
}
TY  - JOUR
AU  - T. G. Sukacheva
TI  - The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 83
EP  - 93
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/
LA  - ru
ID  - VYURU_2010_5_a11
ER  - 
%0 Journal Article
%A T. G. Sukacheva
%T The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 83-93
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/
%G ru
%F VYURU_2010_5_a11
T. G. Sukacheva. The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 83-93. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a11/

[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. in-ta matematiki AN SSSR, 179, 1988, 126–164 | MR

[2] A. P. Oskolkov, “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S. L. Soboleva”, Zapiski nauch. seminarov LOMI, 198, 1991, 31–48 | Zbl

[3] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi matem. nauk, 49:4 (1994), 47–74 | MR | Zbl

[4] A. P. Oskolkov, “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauch. seminarov LOMI AN SSSR, 59, 1976, 133–177 | Zbl

[5] A. P. Oskolkov, “K teorii zhidkostei Foigta”, Zap. nauch. seminarov LOMI, 96, 1980, 233–236 | MR | Zbl

[6] G. A. Sviridyuk, “Razreshimost zadachi termokonvektsii vyazkouprugoi neszhimaemoi zhidkosti”, Izv. vuzov. Matematika, 1990, no. 12, 65–70 | MR

[7] G. A. Sviridyuk, “Fazovye prostranstva polulineinykh uravnenii tipa Soboleva s otnositelno silno sektorialnym operatorom”, Algebra i analiz, 6:5 (1994), 216–237

[8] T. G. Sukacheva, Issledovanie matematicheskikh modelei neszhimaemykh vyazkouprugikh zhidkostei, Dis. ... d-ra fiz.-mat. nauk, Novgorod. gos. un-t, Velikii Novgorod, 2004, 249 pp.

[9] T. G. Sukacheva, “Nestatsionarnaya linearizovannaya model dvizheniya neszhimaemoi vyazkouprugoi zhidkosti”, Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 20 (158):11 (2009), 77–83

[10] T. G. Sukacheva, “Nestatsionarnaya linearizovannaya model dvizheniya neszhimaemoi vyazkouprugoi zhidkosti vysokogo poryadka”, Vestn. YuUrGU. Ser. «Matematicheskoe modelirovanie i programmirovanie», 17 (150):3 (2009), 86–93 | Zbl

[11] G. A. Sviridyuk, V. E. Fedorov, Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003, 179 pp. | MR | Zbl

[12] G. A. Sviridyuk, “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Ser. matematika, 57:3 (1993), 192–207 | Zbl

[13] H. A. Levine, “Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[14] G. A. Sviridyuk, T. G. Sukacheva, “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zhurn., 31:5 (1990), 109–119

[15] G. A. Sviridyuk, T. G. Sukacheva, “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl

[16] G. A. Sviridyuk, T. G. Sukacheva, “Nekotorye matematicheskie zadachi dinamiki vyazkouprugikh neszhimaemykh sred”, Vestn. MaGU. Matematika, 2005, no. 8, 5–33

[17] Yu. G. Borisovich, V. G. Zvyagin, Yu. I. Sapronov, “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Uspekhi matem. nauk, 32:4 (1977), 3–54 | MR

[18] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla, Mir, M., 1980, 368 pp.

[19] T. A. Bokareva, Issledovanie fazovykh prostranstv uravnenii tipa Soboleva s otnositelno sektorialnymi operatorami, Dis. ... kand. fiz.-mat. nauk, Sankt-Peterburg, 1993, 107 pp.

[20] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Izd. 2, Nauka, M., 1970, 288 pp. | MR

[21] G. A. Sviridyuk, “Ob odnoi modeli slaboszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matem., 1994, no. 1, 62–70 | MR

[22] G. A. Sviridyuk, “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennym operatorom”, DAN SSSR, 318:4 (1991), 828–831 | Zbl

[23] G. A. Sviridyuk, “Polulineinye uravneniya tipa Soboleva s otnositelno sektorialnymi operatorami”, Dokl. RAN, 329:3 (1993), 274–277

[24] G. A. Sviridyuk, V. E. Fedorov, “Analiticheskie polugruppy s yadrami i lineinye uravneniya tipa Soboleva”, Sib. matem. zhurn., 36:5 (1995), 1130–1145 | MR | Zbl

[25] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR