The initial-finite problem for Hoff's equations on geometrical graph
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 79-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the study of unique solvability of initial-finite problem for Hoff's equations on a finite connected oriented graph.
Keywords: Hoff's equation, initial-finite problem, relatively $p$-bounded operators, finite connected oriented graph.
@article{VYURU_2010_5_a10,
     author = {N. P. Semenova},
     title = {The initial-finite problem for {Hoff's} equations on geometrical graph},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {79--82},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a10/}
}
TY  - JOUR
AU  - N. P. Semenova
TI  - The initial-finite problem for Hoff's equations on geometrical graph
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 79
EP  - 82
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a10/
LA  - ru
ID  - VYURU_2010_5_a10
ER  - 
%0 Journal Article
%A N. P. Semenova
%T The initial-finite problem for Hoff's equations on geometrical graph
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 79-82
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a10/
%G ru
%F VYURU_2010_5_a10
N. P. Semenova. The initial-finite problem for Hoff's equations on geometrical graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 79-82. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a10/

[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003, 228 pp. | MR | Zbl

[2] A. V. Keller, Issledovanie ogpanichennykh peshenii lineinykh upavnenii tipa Soboleva, Dis. ... kand. fiz.-mat. nauk, Chelyabinsk, 1997

[3] A. A. Pankov, T. E. Pankova, “Nelineinye evolyutsionnye uravneniya s neobratimym operatornym koeffitsientom pri proizvodnoi”, Dokl. Akad. nauk Ukrainy, 1993, no. 9, 18–20 | MR

[4] S. G. Pyatkov, Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | MR | Zbl

[5] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Verigina dlya lineinykh uravnenii sobolevskogo tipa s otnositelno $p$-sektorialnymi operatorami”, Differents. uravneniya, 38:12 (2002), 1646–1652 | MR | Zbl

[6] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28

[7] S. A. Zagrebina, M. A. Sagadeeva, “Obobschennaya zadacha Shouoltera–Sidorova dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Vestn. MaGU. Ser. «Matematika», 2006, no. 9, 17–27

[8] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl

[9] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauch. rabot, Novosibirsk, 2002, 221–225

[10] V. V. Shemetova, Issledovanie odnogo klassa uravnenii sobolevskogo tipa na grafakh, Dis ... kand. fiz.-mat. nauk, Magnitogorsk, 2005

[11] S. A. Zagrebina, “Zadacha Shouoltera–Sidorova dlya uravneniya sobolevskogo tipa na grafe”, Optimizatsiya, upravlenie, intellekt, 2006, no. 1(12), 42–49