Keywords: graph, phase spase, Lyapunov function.
@article{VYURU_2010_5_a1,
author = {S. A. Zagrebina and P. O. Pivovarova},
title = {The stability of the {Hoff} linear equations on a graph},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {11--16},
year = {2010},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/}
}
TY - JOUR AU - S. A. Zagrebina AU - P. O. Pivovarova TI - The stability of the Hoff linear equations on a graph JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2010 SP - 11 EP - 16 IS - 5 UR - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/ LA - ru ID - VYURU_2010_5_a1 ER -
%0 Journal Article %A S. A. Zagrebina %A P. O. Pivovarova %T The stability of the Hoff linear equations on a graph %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2010 %P 11-16 %N 5 %U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/ %G ru %F VYURU_2010_5_a1
S. A. Zagrebina; P. O. Pivovarova. The stability of the Hoff linear equations on a graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 11-16. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/
[1] G. A. Sviridyuk, V. V. Shemetova, “Uravneniya Khoffa na grafakh”, Differents. uravneniya, 42:1 (2006), 126–131
[2] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl
[3] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 2003 | MR | Zbl
[4] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[5] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauch. rabot, Novosibirsk, 2002, 221–225
[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl
[7] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislit. tekhnologii, 8:4 (2003), 45–54 | MR
[8] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differents. uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl
[9] A. V. Keller, “Chislennoe reshenie zadachi startovogo upravleniya dlya sistemy uravnenii leontevskogo tipa”, Obozrenie priklad. i prom. matematiki, 16:2 (2009), 345–346
[10] G. A. Sviridyuk, A. V. Keller, “Invariantnye prostranstva i dikhotomii reshenii odnogo klassa lineinykh uravnenii tipa Soboleva”, Izv. VUZ. Matematika, 1997, no. 5, 60–68 | MR
[11] O. G. Kitaeva, G. A. Sviridyuk, “Ustoichivoe i neustoichivoe invariantnye mnogoobraziya uravneniya Oskolkova”, Neklassicheskie uravneniya matematicheskoi fiziki, Novosibirsk, 2005, 160–166 | MR
[12] S. A. Zagrebina, “O suschestvovanii i ustoichivosti reshenii uravnenii Nave–Stoksa”, Vestn. MaGU. Ser. Matematika, 2005, no. 8, 74–86
[13] S. A. Zagrebina, M. M. Yakupov, “Suschestvovanie i ustoichivost reshenii odnogo klassa polulineinykh uravnenii sobolevskogo tipa”, Vestn. YuUrGU. Ser. «Matematicheskoe modelirovanie i programmirovanie», 27(127):2 (2008), 10–18 | Zbl
[14] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR