The stability of the Hoff linear equations on a graph
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 11-16
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability of stationary solution of the Hoff linear equations on a graph which is a model design of I-beams is considered. The main approach is the second Lyapunov method modifying respectively to our situation.
Mots-clés : Sobolev type equation
Keywords: graph, phase spase, Lyapunov function.
@article{VYURU_2010_5_a1,
     author = {S. A. Zagrebina and P. O. Pivovarova},
     title = {The stability of the {Hoff} linear equations on a graph},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {11--16},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/}
}
TY  - JOUR
AU  - S. A. Zagrebina
AU  - P. O. Pivovarova
TI  - The stability of the Hoff linear equations on a graph
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 11
EP  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/
LA  - ru
ID  - VYURU_2010_5_a1
ER  - 
%0 Journal Article
%A S. A. Zagrebina
%A P. O. Pivovarova
%T The stability of the Hoff linear equations on a graph
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 11-16
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/
%G ru
%F VYURU_2010_5_a1
S. A. Zagrebina; P. O. Pivovarova. The stability of the Hoff linear equations on a graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 11-16. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a1/

[1] G. A. Sviridyuk, V. V. Shemetova, “Uravneniya Khoffa na grafakh”, Differents. uravneniya, 42:1 (2006), 126–131

[2] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl

[3] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 2003 | MR | Zbl

[4] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[5] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauch. rabot, Novosibirsk, 2002, 221–225

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl

[7] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislit. tekhnologii, 8:4 (2003), 45–54 | MR

[8] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differents. uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl

[9] A. V. Keller, “Chislennoe reshenie zadachi startovogo upravleniya dlya sistemy uravnenii leontevskogo tipa”, Obozrenie priklad. i prom. matematiki, 16:2 (2009), 345–346

[10] G. A. Sviridyuk, A. V. Keller, “Invariantnye prostranstva i dikhotomii reshenii odnogo klassa lineinykh uravnenii tipa Soboleva”, Izv. VUZ. Matematika, 1997, no. 5, 60–68 | MR

[11] O. G. Kitaeva, G. A. Sviridyuk, “Ustoichivoe i neustoichivoe invariantnye mnogoobraziya uravneniya Oskolkova”, Neklassicheskie uravneniya matematicheskoi fiziki, Novosibirsk, 2005, 160–166 | MR

[12] S. A. Zagrebina, “O suschestvovanii i ustoichivosti reshenii uravnenii Nave–Stoksa”, Vestn. MaGU. Ser. Matematika, 2005, no. 8, 74–86

[13] S. A. Zagrebina, M. M. Yakupov, “Suschestvovanie i ustoichivost reshenii odnogo klassa polulineinykh uravnenii sobolevskogo tipa”, Vestn. YuUrGU. Ser. «Matematicheskoe modelirovanie i programmirovanie», 27(127):2 (2008), 10–18 | Zbl

[14] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR