The Sturm–Liouville problem on geometric graph
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 4-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The differential equations on graphs with continuity and balance of flow conditions attract attention of many researches. Meantime, there was noted that modeling of different processes in natural and technical sciences in row of events is described by the equations of Sobolev type. At studying Sobolev type equations the Sturm–Liouville problem appeared. The article generalized the previous results and is devoted to the study of characteristics of eigenvalues and generalized eigenfunctions of the Sturm–Liouville problem on geometric graphs.
Keywords: eigenvalues, eigenfunctions, Sturm–Liouville operator.
@article{VYURU_2010_5_a0,
     author = {A. A. Bayazitova},
     title = {The {Sturm{\textendash}Liouville} problem on geometric graph},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {4--10},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_5_a0/}
}
TY  - JOUR
AU  - A. A. Bayazitova
TI  - The Sturm–Liouville problem on geometric graph
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 4
EP  - 10
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_5_a0/
LA  - ru
ID  - VYURU_2010_5_a0
ER  - 
%0 Journal Article
%A A. A. Bayazitova
%T The Sturm–Liouville problem on geometric graph
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 4-10
%N 5
%U http://geodesic.mathdoc.fr/item/VYURU_2010_5_a0/
%G ru
%F VYURU_2010_5_a0
A. A. Bayazitova. The Sturm–Liouville problem on geometric graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 5 (2010), pp. 4-10. http://geodesic.mathdoc.fr/item/VYURU_2010_5_a0/

[1] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp. | Zbl

[2] S. Kosugi, “A semilinear elliptic equation in a thin network-shaped domain”, J. Math. Soc. Jap., 52:3 (2000), 672–697 | DOI | MR

[3] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauch. rabot, Novosibirsk, 2002, 221–225

[4] V. V. Shemetova, Issledovanie odnogo klassa uravnenii sobolevskogo tipa na grafakh, Dis. ... kand. fiz.-mat. nauk: 01.01.02: zaschischena 27.12.05: utv. 10.05.06, 2005, Magnitogorsk, 109, Bibliogr.: s. 93–109

[5] G. A. Sviridyuk, V. V. Shemetova, “Uravneniya Barenblatta–Zheltova–Kochinoi na grafe”, Vestnik MaGU. Matematika, 2003, no. 4, 129–139

[6] G. A. Sviridyuk, V. V. Shemetova, “Fazovoe prostranstvo odnoi neklassicheskoi modeli”, Izv. vuzov. Matematika, 2005, no. 10, 47–52

[7] G. A. Sviridyuk, V. V. Shemetova, “Uravneniya Khoffa na grafe”, Differents. uravneniya, 42:1 (2006), 126–131

[8] P. O. Pivovarova, “O neustoichivosti reshenii evolyutsionnykh uravnenii sobolevskogo tipa na grafe”, Vestn. YuUrGU. Ser. «Matematicheskoe modelirovanie i programmirovanie», 15(115):1 (2008), 64–68 | MR | Zbl

[9] S. A. Zagrebina, N. P. Soloveva, “Nachalno-konechnaya zadacha dlya lineinykh evolyutsionnykh uravnenii sobolevskogo tipa na grafe”, Obozrenie priklad. i prom. matematiki, 16:2 (2009), 329–330

[10] A. A. Zamyshlyaeva, “Reshenie odnogo uravneniya sobolevskogo tipa na grafe”, Obozrenie priklad. i promysh. matematiki, 16 (2009), 332–333

[11] G. A. Sviridyuk, A. A. Bayazitova, “O pryamoi i obratnoi zadachakh dlya uravnenii Khoffa na grafe”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 1 (18) (2009), 6–17 | DOI