Keywords: traffic flow, neural network, machine learning, mathematical model, monitoring of environmental risks.
@article{VYURM_2024_16_4_a9,
author = {V. D. Shepelev and A. I. Glushkov and A. G. Levashev},
title = {Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {85--95},
year = {2024},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/}
}
TY - JOUR AU - V. D. Shepelev AU - A. I. Glushkov AU - A. G. Levashev TI - Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 85 EP - 95 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/ LA - ru ID - VYURM_2024_16_4_a9 ER -
%0 Journal Article %A V. D. Shepelev %A A. I. Glushkov %A A. G. Levashev %T Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 85-95 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/ %G ru %F VYURM_2024_16_4_a9
V. D. Shepelev; A. I. Glushkov; A. G. Levashev. Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 85-95. http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/
[1] T. Ercan, N.C. Onat, N. Keya et al., “Autonomous Electric Vehicles Can Reduce Carbon Emissions and Air Pollution in Cities”, Transportation Research Part D: Transport and Environment, 112 (2022) | DOI
[2] A. Karanasiou, M. Viana, X. Querol et al., “Personal Exposure to Particulate Air Pollution during Commuting in European Cities Recommendations and Policy Implications”, Science of The Total Environment, 490 (2014), 785–797 | DOI
[3] M. Chakraborty, M.R. Rahat, T.R. Choudhury et al., “Heavy Metal Contamination and Health Risk Assessment of Road Dust from Landfills in Dhaka-Narayanganj, Bangladesh”, Emerging Contaminants, 10:1 (2023), 100278 | DOI
[4] T. Tran, D. He, J. Kim, M. Hickman, “MSGNN: A Multi-Structured Graph Neural Network Model for Real-Time Incident Prediction in Large Traffic Networks”, Transportation Research Part C: Emerging Technologies, 156 (2023), 104354 | DOI
[5] N. Brusselaers, C. Macharis, K. Mommens, “Rerouting Urban Construction Transport Flows to Avoid Air Pollution Hotspots”, Transportation Research Part D: Transport and Environment, 119:103747 (2023)
[6] C.K. Gately, L.R. Hutyra, S. Peterson, I.S. Wing, “Urban Emissions hotspots: Quantifying Vehicle Congestion and Air Pollution using Mobile Phone GPS Data Wing”, Environmental Pollution, 229 (2017), 496–504 | DOI
[7] W. Yuan, H.C. Frey, T. Wei, “Fuel Use and Emission Rates Reduction Potential for Light-Duty Gasoline Vehicle Eco-Driving”, Transportation Research Part D: Transport and Environment, 109 (2022), 103394 | DOI
[8] V. N. Baskov, A.V. Ignatov, “Kategorirovanie uchastkov ulichno-dorozhnoi seti po stepeni riska transportnogo zatora s uchetom skorostnykh intervalov”, Mir transporta i tekhnologicheskikh mashin, 2016, no. 3 (54), 53–59
[9] M.G. Boyarshinov, A.S. Vavilin, “Kharakteristiki transportnogo zatora na osnove dannykh sistemy foto- i videofiksatsii”, Intellekt. Innovatsii. Investitsii, 2023, no. 3, 83–106
[10] G. Buonanno, F.C. Fuoco, L. Stabile, “Influential Parameters on Particle Exposure of Pedestrians in Urban Microenvironments”, Atmospheric Environment, 45:7 (2011), 1434–1443 | DOI
[11] Y. Bai, T. Zhao, W. Hu et al., “Meteorological Mechanism of Regional PM2.5 Transport Building a Receptor Region for Heavy Air Pollution over Central China”, Science of The Total Environment, 808 (2022), 151951 | DOI
[12] N. Brusselaers, C. Macharis, K. Mommens, “The Health Impact of Freight Transport-Related Air Pollution on Vulnerable Population Groups”, Environmental Pollution, 329:4 (2023), 121555 | DOI
[13] M. Sharma, A.K. Mathur, “Assessment/Monitoring of Air Pollution and Effect on Human Health in Kota City During SPRING Season 2020”, Materials Today, Proceedings, 2023 https://www.sciencedirect.com/science/article/pii/S2214785323050903
[14] H. Woodward, M. Stettler, D. Pavlidis et al., “A Large Eddy Simulation of the Dispersion of Traffic Emissions by Moving Vehicles at an Intersection”, Atmospheric Environment, 215 (2019), 116891 | DOI
[15] L. Yao, S. Sun, Y. Wang et al., “New Insight into the Urban PM2.5 Pollution Island Effect Enabled by the Gaussian Surface Fitting Model: A Case Study in a Mega Urban Agglomeration Region of China”, International Journal of Applied Earth Observation and Geoinformation, 113 (2022), 102982 | DOI
[16] Ob utverzhdenii metodiki opredeleniya vybrosov zagryaznyayuschikh veschestv v atmosfernyi vozdukh ot peredvizhnykh istochnikov dlya provedeniya svodnykh raschetov zagryazneniya atmosfernogo vozdukha, Prikaz Ministerstva prirodnykh resursov i ekologii RF ot 27 noyabrya 2019 g. No 804
[17] A. Burrello, G. Zara, L. Benini et al., “Traffic Load Estimation from Structural Health Monitoring Sensors using Supervised Learning”, Sustainable Computing: Informatics and Systems, 35 (2022), 100704 | DOI
[18] S. Sun, B. Mo, J. Xu et al., “Multi-YOLOv8: An Infrared Moving Small Object Detection Model Based on YOLOv8 for Air Vehicle”, Neurocomputing, 588 (2024), 127685 | DOI
[19] M.V. Peppa, D. Bell, T. Komar, W. Xiao, “Urban Traffic Flow Analysis Based on Deep Learning Car Detection from CCTV Image Series”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS Archives, 42:4 (2018), 565–572
[20] R. Berkowicz, M. Winther, M. Ketzel, “Traffic Pollution Modelling and Emission Data”, Environmental Modelling and Software, 21:4 (2006), 454–460 | DOI