Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 85-95
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In modern cities, environmental issues related to motor transport occupy an increasingly important place in the management system of urban transport flows. Vehicles emit the greatest amount of exhaust gases during sudden changes in traffic modes, which is typical of signalized intersections. Traffic congestion situations also occur more often at intersections, when a large concentration of traffic creates an unfavorable environmental background. To obtain operational information about the parameters of the intensity of traffic flows, the authors used neural network algorithms for recognizing vehicles from video streams received from stationary street surveillance cameras at city intersections. An optimized algorithm for the operation of a trained neural network (YOLOv4) allows for extracting and interpreting data on traffic flow parameters in real time. As part of the study, the developed mathematical models made it possible to implement real-time monitoring of the amount and concentration of pollutants from vehicles in the controlled intersection zone. The calculation of the amount of pollutants released into the atmosphere from transport is carried out taking into account the average speed, type of vehicle and idle time in the measurement area. An appropriate software system can serve as a basis for predicting the difficulty levels and environmental risks of various atypical traffic situations.
Mots-clés : emissions of pollutants, emissions concentration
Keywords: traffic flow, neural network, machine learning, mathematical model, monitoring of environmental risks.
@article{VYURM_2024_16_4_a9,
     author = {V. D. Shepelev and A. I. Glushkov and A. G. Levashev},
     title = {Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {85--95},
     year = {2024},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/}
}
TY  - JOUR
AU  - V. D. Shepelev
AU  - A. I. Glushkov
AU  - A. G. Levashev
TI  - Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 85
EP  - 95
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/
LA  - ru
ID  - VYURM_2024_16_4_a9
ER  - 
%0 Journal Article
%A V. D. Shepelev
%A A. I. Glushkov
%A A. G. Levashev
%T Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 85-95
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/
%G ru
%F VYURM_2024_16_4_a9
V. D. Shepelev; A. I. Glushkov; A. G. Levashev. Mathematical support for monitoring pollutant emissions from vehicles in the regulated intersection area based on neural network algorithms. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 85-95. http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a9/

[1] T. Ercan, N.C. Onat, N. Keya et al., “Autonomous Electric Vehicles Can Reduce Carbon Emissions and Air Pollution in Cities”, Transportation Research Part D: Transport and Environment, 112 (2022) | DOI

[2] A. Karanasiou, M. Viana, X. Querol et al., “Personal Exposure to Particulate Air Pollution during Commuting in European Cities Recommendations and Policy Implications”, Science of The Total Environment, 490 (2014), 785–797 | DOI

[3] M. Chakraborty, M.R. Rahat, T.R. Choudhury et al., “Heavy Metal Contamination and Health Risk Assessment of Road Dust from Landfills in Dhaka-Narayanganj, Bangladesh”, Emerging Contaminants, 10:1 (2023), 100278 | DOI

[4] T. Tran, D. He, J. Kim, M. Hickman, “MSGNN: A Multi-Structured Graph Neural Network Model for Real-Time Incident Prediction in Large Traffic Networks”, Transportation Research Part C: Emerging Technologies, 156 (2023), 104354 | DOI

[5] N. Brusselaers, C. Macharis, K. Mommens, “Rerouting Urban Construction Transport Flows to Avoid Air Pollution Hotspots”, Transportation Research Part D: Transport and Environment, 119:103747 (2023)

[6] C.K. Gately, L.R. Hutyra, S. Peterson, I.S. Wing, “Urban Emissions hotspots: Quantifying Vehicle Congestion and Air Pollution using Mobile Phone GPS Data Wing”, Environmental Pollution, 229 (2017), 496–504 | DOI

[7] W. Yuan, H.C. Frey, T. Wei, “Fuel Use and Emission Rates Reduction Potential for Light-Duty Gasoline Vehicle Eco-Driving”, Transportation Research Part D: Transport and Environment, 109 (2022), 103394 | DOI

[8] V. N. Baskov, A.V. Ignatov, “Kategorirovanie uchastkov ulichno-dorozhnoi seti po stepeni riska transportnogo zatora s uchetom skorostnykh intervalov”, Mir transporta i tekhnologicheskikh mashin, 2016, no. 3 (54), 53–59

[9] M.G. Boyarshinov, A.S. Vavilin, “Kharakteristiki transportnogo zatora na osnove dannykh sistemy foto- i videofiksatsii”, Intellekt. Innovatsii. Investitsii, 2023, no. 3, 83–106

[10] G. Buonanno, F.C. Fuoco, L. Stabile, “Influential Parameters on Particle Exposure of Pedestrians in Urban Microenvironments”, Atmospheric Environment, 45:7 (2011), 1434–1443 | DOI

[11] Y. Bai, T. Zhao, W. Hu et al., “Meteorological Mechanism of Regional PM2.5 Transport Building a Receptor Region for Heavy Air Pollution over Central China”, Science of The Total Environment, 808 (2022), 151951 | DOI

[12] N. Brusselaers, C. Macharis, K. Mommens, “The Health Impact of Freight Transport-Related Air Pollution on Vulnerable Population Groups”, Environmental Pollution, 329:4 (2023), 121555 | DOI

[13] M. Sharma, A.K. Mathur, “Assessment/Monitoring of Air Pollution and Effect on Human Health in Kota City During SPRING Season 2020”, Materials Today, Proceedings, 2023 https://www.sciencedirect.com/science/article/pii/S2214785323050903

[14] H. Woodward, M. Stettler, D. Pavlidis et al., “A Large Eddy Simulation of the Dispersion of Traffic Emissions by Moving Vehicles at an Intersection”, Atmospheric Environment, 215 (2019), 116891 | DOI

[15] L. Yao, S. Sun, Y. Wang et al., “New Insight into the Urban PM2.5 Pollution Island Effect Enabled by the Gaussian Surface Fitting Model: A Case Study in a Mega Urban Agglomeration Region of China”, International Journal of Applied Earth Observation and Geoinformation, 113 (2022), 102982 | DOI

[16] Ob utverzhdenii metodiki opredeleniya vybrosov zagryaznyayuschikh veschestv v atmosfernyi vozdukh ot peredvizhnykh istochnikov dlya provedeniya svodnykh raschetov zagryazneniya atmosfernogo vozdukha, Prikaz Ministerstva prirodnykh resursov i ekologii RF ot 27 noyabrya 2019 g. No 804

[17] A. Burrello, G. Zara, L. Benini et al., “Traffic Load Estimation from Structural Health Monitoring Sensors using Supervised Learning”, Sustainable Computing: Informatics and Systems, 35 (2022), 100704 | DOI

[18] S. Sun, B. Mo, J. Xu et al., “Multi-YOLOv8: An Infrared Moving Small Object Detection Model Based on YOLOv8 for Air Vehicle”, Neurocomputing, 588 (2024), 127685 | DOI

[19] M.V. Peppa, D. Bell, T. Komar, W. Xiao, “Urban Traffic Flow Analysis Based on Deep Learning Car Detection from CCTV Image Series”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS Archives, 42:4 (2018), 565–572

[20] R. Berkowicz, M. Winther, M. Ketzel, “Traffic Pollution Modelling and Emission Data”, Environmental Modelling and Software, 21:4 (2006), 454–460 | DOI