Conceptual and set-theoretical models of the functioning and application of system solutions for bottom sediment sampling
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 43-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modernization of limnological equipment used for the sampling of bottom sediments is systematically considered. Conceptual and set-theoretical models of the functioning and application of bottom grab sampling are proposed. A classification of existing samplers is given, their distinctive characteristics are considered, and a historical overview of upgrades is carried out. The task of designing acceptable system engineering solutions for bottom grab sampling is reduced to finding options that meet functional and ergonomic criteria. The structure and functions of bottom grab sampling software and hardware are considered taking into account the cost of the entire life cycle of the equipment. The importance of taking into account the ergonomics and safety of the use of the measuring instruments and sampling equipment during their design and modernization is emphasized. The version of the bottom grab sampler is distinguished by the use of sampling quality analysis when automating the operation of buckets. Bottom grab sampling was successfully tested during an expedition on Lake Ladoga. The collected material and the changes in acceleration at the time of the landing of the bottom grab sampler on the bottom sediment is used to configure the structure and train the artificial neural network, on the basis of which the on-board system for recognizing types of bottom surfaces.
Keywords: system analysis, equipment life cycle, sampling, bottom grab, ergonomics, bottom soil, artificial neural networks.
Mots-clés : limnology
@article{VYURM_2023_15_1_a4,
     author = {A. L. Ronzhin and M. O. Dudakov and D. S. Dudakova},
     title = {Conceptual and set-theoretical models of the functioning and application of system solutions for bottom sediment sampling},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {43--54},
     year = {2023},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a4/}
}
TY  - JOUR
AU  - A. L. Ronzhin
AU  - M. O. Dudakov
AU  - D. S. Dudakova
TI  - Conceptual and set-theoretical models of the functioning and application of system solutions for bottom sediment sampling
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 43
EP  - 54
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a4/
LA  - ru
ID  - VYURM_2023_15_1_a4
ER  - 
%0 Journal Article
%A A. L. Ronzhin
%A M. O. Dudakov
%A D. S. Dudakova
%T Conceptual and set-theoretical models of the functioning and application of system solutions for bottom sediment sampling
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 43-54
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a4/
%G ru
%F VYURM_2023_15_1_a4
A. L. Ronzhin; M. O. Dudakov; D. S. Dudakova. Conceptual and set-theoretical models of the functioning and application of system solutions for bottom sediment sampling. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 43-54. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a4/

[1] A. Eleftheriou, Methods for the Study of Marine Benthos, Heraklion, Greece, 2013, 496 pp.

[2] V.I. Zhadin, “Metodika izucheniya donnoi fauny vodoemov i ekologii donnykh bespozvonochnykh”, Zhizn presnykh vod, Chast 1, v. 4, Akademiya nauk SSSR, M.-L., 1956, 279–382

[3] K. Katsuki, K. Seto, Y. Suganuma, D.Y. Yang, “Characteristics of Portable Core Samplers for Lake Deposit Investigations”, Journal of Geography (Chigaku Zasshi), 128:3 (2019), 359–376 | DOI

[4] B.E. Narayanaswamy, B.J. Bett, P.A. Lamont et al., “Corers and Grabs”, Biological Sampling in the Deep Sea, eds. M.R. Clark, M. Consalvey, A.A. Rowden, 2016

[5] C.G.J. Petersen, P. Boysen-Jensen, Valuation of the Sea. I. Animal Life of the Sea Bottom, Its FOOD and quantity, Report from the Danish Biological Station No 20, 1911, 81 pp.

[6] S. Ekman, “Neue Apparate zur Qualitativen und Quantitativen Erforschung der Boden-Fauna der Seen”, Int. Revue ges. Hydrobiol. Hydrogr., 3:5-6 (1911), 553–561 | DOI

[7] E.A. Birge, “A Second Report on Limnological Apparatus”, Trans. Wis. Acad. Sci. Arts Lett., 20 (1921), 533–552

[8] J. van Veen, “Onderzoeken naar het zandtransport van rivieren”, De Ingenieur, 48 (1933), 151–160

[9] A.P. Lisitsyn, G.B. Udintsev, “Dnocherpatel «Okean-50» i vozmozhnosti ego primeneniya pri okeanograficheskikh issledovaniyakh”, Meteorologiya i gidrologiya, 1952, no. 8, 44–46

[10] J.M. Elliott, C.M. Drake, “A Comparative Study of Seven Grabs used for Sampling Benthic Macroinvertebrates in Rivers”, Freshwater biology, 11:2 (1981), 99–120 | DOI

[11] S. Blomqvist, “Sampling Performance of Ekman Grabs - in situ Observations and Design Improvements”, Hydrobiologia, 206 (1990), 245–254 | DOI

[12] A. Jonasson, E. Olausson, “New Devices for Sediment Sampling”, Marine Geology, 4:5 (1966), 365–372 | DOI

[13] H.E. Reineck, “Der Kastengreifer”, Natur und Museum, 93:3 (1963), 101–108

[14] J.S. Craib, “A Sampler for Taking Short Undisturbed Marine Cores”, ICES Journal of Marine Science, 30:1 (1965), 34–39 | DOI

[15] G.T. Rowe, C.H. Clifford, “Modifications of the Birge-Ekman Box Corer for use with SCUBA or Deep Submergence”, Limnology and Oceanography, 18 (1973), 172–175 | DOI

[16] P.B. Mortensen, J.M. Roberts, R.C. Sundt, “Video-Assisted Grabbing: a Minimally Destructive Method of Sampling Azooxanthellate Coral Banks”, Journal of the Marine Biological Association United Kingdom, 80:2 (2000), 365–366 | DOI

[17] Yu.A. Kukushkin, A.V. Bogomolov, “Procedure for Synthesizing the Index of an Operator's Psychophysiological Stress”, Biomedical Engineering, 2001, no. 4, 29–33

[18] A.V. Bogomolov, “Kontseptsiya matematicheskogo obespecheniya diagnostiki sostoyaniya cheloveka”, Informatika i sistemy upravleniya, 2008, no. 2 (16), 11–13

[19] V.N. Zinkin, Yu.A. Kukushkin, A.V. Bogomolov i dr., “Issledovanie effektivnosti sredstv individualnoi i kollektivnoi zaschity ot shuma na osnove otsenki potentsialnoi nenadezhnosti professionalnoi deyatelnosti aviatsionnykh spetsialistov”, Bezopasnost zhiznedeyatelnosti, 2010, no. 11 (119), 2–6

[20] S.K. Soldatov, A.V. Bogomolov, V.N. Zinkin, S.P. Dragan, “Problemy obespecheniya akusticheskoi bezopasnosti personala aviatsionnoi promyshlennosti”, Bezopasnost truda v promyshlennosti, 2014, no. 10, 58–60

[21] V.N. Zinkin, A.V. Bogomolov, I.M. Akhmetzyanov, P.M. Sheshegov, “Ekologicheskie aspekty bezopasnosti zhiznedeyatelnosti naseleniya, podvergayuschegosya deistviyu aviatsionnogo shuma”, Teoreticheskaya i prikladnaya ekologiya, 2011, no. 3, 97–101

[22] V.N. Kalinin, A.Yu. Kulakov, A.N. Pavlov i dr., “Metody i algoritmy sinteza tekhnologii i programm upravleniya rekonfiguratsiei bortovykh sistem malomassorazmernykh kosmicheskikh apparatov”, Informatika i avtomatizatsiya, 2021, no. 2 (20), 236–269