Mots-clés : BCI, autoencoder
@article{VYURM_2023_15_1_a3,
author = {R. V. Meshcheryakov and D. A. Volf and Y. A. Turovsky},
title = {An autocoder of the electrical activity of the human brain},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {34--42},
year = {2023},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a3/}
}
TY - JOUR AU - R. V. Meshcheryakov AU - D. A. Volf AU - Y. A. Turovsky TI - An autocoder of the electrical activity of the human brain JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 34 EP - 42 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a3/ LA - ru ID - VYURM_2023_15_1_a3 ER -
%0 Journal Article %A R. V. Meshcheryakov %A D. A. Volf %A Y. A. Turovsky %T An autocoder of the electrical activity of the human brain %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 34-42 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a3/ %G ru %F VYURM_2023_15_1_a3
R. V. Meshcheryakov; D. A. Volf; Y. A. Turovsky. An autocoder of the electrical activity of the human brain. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 34-42. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a3/
[1] D.A. Novikov, “Kibernetika 2.0”, Problemy upravleniya, 2016, no. 1, 73–81
[2] S. Kharchenko, R. Meshcheryakov, Y. Turovsky, D. Volf, “Implementation of Robot-Human Control Bio-Interface when Highlighting Visual-Evoked Potentials Based on Multivariate Synchronization Index”, Smart Innovation, Systems and Technologies, 187 (2021), 225–236 | DOI
[3] L.A. Gridin, A.V. Bogomolov, Yu.A. Kukushkin, “Metodologicheskie osnovy issledovaniya fizicheskoi rabotosposobnosti cheloveka”, Aktualnye problemy fizicheskoi podgotovki silovykh struktur, 2011, no. 1, 10–19
[4] M.V. Gerven, J. Farquhar, R. Schaefer et al., “The Brain Computer Interface Cycle”, Journal of Neural Engineering, 6:4 (2009), 1–10 | DOI
[5] M.V. Dvornikov, Yu.A. Kukushkin, A.V. Bogomolov, T.V. Matyushev, “Tekhnologiya sinteza zakonov upravleniya cheloveko-mashinnymi sistemami, ekspluatiruemymi v usloviyakh vysokogo riska gipoksicheskikh sostoyanii cheloveka”, Dvoinye tekhnologii, 2014, no. 1 (66), 8–11
[6] A.O. Iskhakova, D.A. Volf, A.Yu. Iskhakov, “Neinvazivnyi neirokompyuternyi interfeis dlya upravleniya robotom”, Vysokoproizvoditelnye vychislitelnye sistemy i tekhnologii, 5:1 (2021), 166–171
[7] A.G. Guzii, A.V. Bogomolov, Yu.A. Kukushkin, “Teoreticheskie osnovy funktsionalno-adaptivnogo upravleniya sistemami «chelovek-mashina» povyshennoi avariinosti”, Mekhatronika, avtomatizatsiya, upravlenie, 2005, no. 1, 39–45
[8] A.O. Iskhakova, M.D. Alekhin, A.V. Bogomolov, “Vremya-chastotnye preobrazovaniya v analize patternov nestatsionarnykh kvaziperiodicheskikh biomeditsinskikh signalov dlya zadach identifikatsii akusticheskikh anomalii”, Informatsionno-upravlyayuschie sistemy, 2020, no. 1 (104), 15–23
[9] N. Tishby, C.P. Fernando, B. William, The information bottleneck method, 2000, arXiv: physics/0004057
[10] T. Tao, X. Yi, G. Xiaorong, G. Shangkai, “Chirp-Modulated Visual Evoked Potential as a Generalization of Steady State Visual Evoked Potential”, Journal of neural engineering, 9:1 (2011), 016008 | MR
[11] N.S. Kwak, K.R. Müller, S.W. Lee, “Toward Exoskeleton Control Based on Steady State Visual evoked potentials”, International Winter Workshop on Brain-Computer Interface, BCI 2014 (Gangwon, Korea, 2014)
[12] R. Balnytė, I. Uloziene, D. Rastenytė et al., “Diagnostic Value of Conventional Visual Evoked Potentials Applied to Patients With Multiple Sclerosis”, Medicina, 47:5 (2011), 263–269
[13] O. Markand, “Visual Evoked Potentials”, Clinical Evoked Potentials, 2020, 83–137, Springer, Cham | DOI
[14] U. Chaudhary, N. Birbaumer, M.R. Curado, “Brain-Machine Interface (BMI) in paralysis”, Annals of Physical and Rehabilitation Medicine, 58:1 (2015), 9–13 | DOI
[15] H. Nguyen, S. Bottone, K. Kim et al., “Adversarial Neural Networks for Error Correcting Codes”, 2021 IEEE Global Communications Conference (GLOBECOM) (7-11 December 2021, Madrid, Spain), 2021
[16] U. Köse, O. Deperlioglu, J. Alzubi, B. Patrut, “Diagnosing Parkinson by Using Deep Autoencoder Neural Network”, Deep Learning for Medical Decision Support Systems, Studies in Computational Intelligence, 909, Springer, Singapore, 2020, 73–93 | DOI
[17] V. Mirjalili, S. Raschka, A. Namboodiri, A. Ross, “Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images”, 2018 International Conference on Biometrics (ICB) (IEEE, Gold Coast, QLD, Australia, 2018), 82–89