@article{VYURM_2022_14_2_a6,
author = {M. V. Kaplun and E. V. Anikina and V. P. Beskachko},
title = {Ab initio modelling of a bilayer graphene},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {64--71},
year = {2022},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a6/}
}
TY - JOUR AU - M. V. Kaplun AU - E. V. Anikina AU - V. P. Beskachko TI - Ab initio modelling of a bilayer graphene JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 64 EP - 71 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a6/ LA - en ID - VYURM_2022_14_2_a6 ER -
%0 Journal Article %A M. V. Kaplun %A E. V. Anikina %A V. P. Beskachko %T Ab initio modelling of a bilayer graphene %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 64-71 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a6/ %G en %F VYURM_2022_14_2_a6
M. V. Kaplun; E. V. Anikina; V. P. Beskachko. Ab initio modelling of a bilayer graphene. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 64-71. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a6/
[1] The growth of A graphite on (111) diamond, The Journal of Chemical Physics, 129:23 (2008), 234709 | DOI
[2] Z. Liu, K. Suenaga, P.J.F. Harris, S. Iijima, “Open and Closed Edges of Graphene Layers”, Physical Review Letters, 102:1 (2009), 015501 | DOI
[3] J.K. Lee, J.-G. Kim, K. Hembram et al., “The Nature of Metastable AA' Graphite: Low Dimensional Nano- and Single-Crystalline Forms”, Scientific Reports, 6 (2016), 39624 | DOI
[4] E. McCann, M. Koshino, “The electronic properties of bilayer graphene”, Reports on Progress in Physics, 76:5 (2013), 056503 | DOI
[5] Rozhkov A. V., Sboychakov A. O., Rakhmanov A. L., Franco Nori, “Electronic properties of graphene-based bilayer systems”, Physics Reports, 648 (2016), 1–104 | DOI | MR
[6] S. Dai, Y. Xiang, D.J. Srolovitz, “Twisted Bilayer Graphene: Moire with a Twist”, Nano Letters, 16:9 (2016), 5923–5927 | DOI
[7] R.W. Havener, H. Zhuang, L. Brown et al., “Angle-Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene”, Nano Letters, 12:6 (2012), 3162–3167 | DOI
[8] J.M. Soler, E. Artacho, J.D. Gale, “The SIESTA method for ab initio order-N materials simulation”, Journal of Physics: Condensed Matter, 14:11 (2002), 2745–2779 | DOI
[9] G.F.J. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Physical Review B, 54:16 (1996), 11169–11186 | DOI
[10] D.M. Ceperley, B.J. Alder, “Ground State of the Electron Gas by a Stochastic Method”, Physical Review Letters, 45:7 (1980), 566–569 | DOI | MR
[11] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Physical Review Letters, 78:7 (1997), 3865–3868 | DOI
[12] S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction”, Journal of computational chemistry, 27:15 (2006), 1787–1799 | DOI
[13] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu”, J. Chem. Phys., 132:15 (2010), 154104 | DOI
[14] Abinit's Fritz-Haber-Institute (FHI) pseudo database, (data obrascheniya: 14.12.2019) https://departments.icmab.es/leem/SIESTA_MATERIAL/Databases/Pseudopotentials/periodictable-intro.html
[15] P. Rivero, V.M. Garcia-Suarez, D. Pereniguez et al., “Systematic pseudopotentials from reference eigenvalue sets for DFT calculations: Pseudopotential files”, Data in Brief, 3 (2015), 21–23 | DOI
[16] E.V. Anikina, V.P. Beskachko, “Optimizatsiya parametrov bazisnogo nabora dlya modelirovaniya adsorbtsii vodoroda na uglerodnykh metananotrubkakh v pakete SIESTA”, Materialy devyatoi nauchnoi konferentsii aspirantov i doktorantov (Chelyabinsk, 2017), 126–134
[17] S.F. Boys, F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors.”, Molecular Physics, 19:4 (1970), 553–566 | DOI
[18] E. Mostaani, N.D. Drummond, V.-I. Fal'ko, “Quantum Monte Carlo calculation of the binding energy of bilayer graphene”, Physical Review Letters, 115:11 (2015), 115501 | DOI
[19] Z. Liu, J.Z. Liu, Y. Cheng et al., “Interlayer binding energy of graphite: a mesoscopic determination from deformation”, Physical Review B, 85:20 (2012), 205418 | DOI
[20] S. Lebegue, J. Harl, T. Gould et al., “Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation”, Physical Review Letters, 105:19 (2010), 196401 | DOI
[21] P. Kostenetskiy, P. Semenikhina, “SUSU Supercomputer Resources for Industry and fundamental Science”, Proc. 2018 Global Smart Industry Conference (GloSIC), SUSU Supercomputer Resources for Industry and fundamental, Chelyabinsk, 2018, 1–7