Morphology of the phase space of one mathematical model of a nerve impulse propagation in the membrane shell
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 3, pp. 14-25
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the study of the morphology of the phase space of a degenerate two-component mathematical model of a nerve impulse propagation in the membrane shell. A mathematical model is studied in the case when the parameter at the time derivative of the component responsible for the dynamics of the membrane potential is equal to zero, and the theorem about the fact that the phase space is simple in this case is proved. A mathematical model is also considered in the case when the parameter at the time derivative of the component responsible for the ion currents is equal to zero, and the theorem on the presence of singularities of Whitney assemblies is proved. Based on the results obtained, the phase space of the mathematical model is constructed in the case when the parameters at the time derivative of both components of the system are equal to zero. The author gives examples of the construction of the phase space, illustrating the presence of features in the phase space of the studied problems based on the Galerkin method.
Keywords:
phase space method, Showalter-Sidorov problem, Fitz Hugh-Nagumo system of equations.
Mots-clés : Sobolev type equations
Mots-clés : Sobolev type equations
@article{VYURM_2021_13_3_a1,
author = {O. V. Gavrilova},
title = {Morphology of the phase space of one mathematical model of a nerve impulse propagation in the membrane shell},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {14--25},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_3_a1/}
}
TY - JOUR AU - O. V. Gavrilova TI - Morphology of the phase space of one mathematical model of a nerve impulse propagation in the membrane shell JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 14 EP - 25 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_3_a1/ LA - en ID - VYURM_2021_13_3_a1 ER -
%0 Journal Article %A O. V. Gavrilova %T Morphology of the phase space of one mathematical model of a nerve impulse propagation in the membrane shell %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 14-25 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_3_a1/ %G en %F VYURM_2021_13_3_a1
O. V. Gavrilova. Morphology of the phase space of one mathematical model of a nerve impulse propagation in the membrane shell. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 3, pp. 14-25. http://geodesic.mathdoc.fr/item/VYURM_2021_13_3_a1/