Basis set superposition error: effects of atomic basis set optimization on value of counterpoise correction
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 55-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the DFT method, we simulated the adsorption of a single hydrogen molecule on pristine low-dimensional carbon nanomaterials: carbon nanotubes (CNT), en-yne (CEY), and graphdiyne (GDY). For wave function decomposition, we employed two approaches: localized pseudoatomic orbitals (SIESTA package) and plane waves (VASP package). For CNT, CEY, GDY, and bulk carbon (graphite), we optimized atomic basis sets. Delta test of used DFT packages showed a good agreement for carbon: $\Delta_C = 0,36$ meV/atom. We demonstrated that after atomic basis set optimization the value of counterpoise (CP) correction of basis set superposition error (BSSE) in calculations of hydrogen adsorption energies reduces. Moreover, this CP correction could be by several times bigger than the corrected hydrogen adsorption energy. Therefore, to obtain reasonable results in weakly interacting systems, CP-corrected adsorption energies in the optimized PAOs are needed. In considered systems, hydrogen adsorption energies, which were calculated in this way, agree with the energies obtained using the BSSE-free plane-wave basis set.
Keywords: Density functional theory (DFT), localized pseudoatomic orbitals(PAOs), projector-augmented wave method (PAW), delta test, carbon nanomaterials.
Mots-clés : hydrogen adsorption
@article{VYURM_2020_12_1_a6,
     author = {E. V. Anikina and V. P. Beskachko},
     title = {Basis set superposition error: effects of atomic basis set optimization on value of counterpoise correction},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {55--62},
     year = {2020},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a6/}
}
TY  - JOUR
AU  - E. V. Anikina
AU  - V. P. Beskachko
TI  - Basis set superposition error: effects of atomic basis set optimization on value of counterpoise correction
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 55
EP  - 62
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a6/
LA  - en
ID  - VYURM_2020_12_1_a6
ER  - 
%0 Journal Article
%A E. V. Anikina
%A V. P. Beskachko
%T Basis set superposition error: effects of atomic basis set optimization on value of counterpoise correction
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 55-62
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a6/
%G en
%F VYURM_2020_12_1_a6
E. V. Anikina; V. P. Beskachko. Basis set superposition error: effects of atomic basis set optimization on value of counterpoise correction. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 55-62. http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a6/

[1] B. Sakintuna, Y. Yürüm, “Templated porous carbons: a review article”, Industrial engineering chemistry research, 44:9 (2005), 2893–2902 | DOI

[2] Beskachko V.P., Sozykin S.A., Sokolova E.R., “The mechanical properties of single-walled carbon nanotubes”, All materials. Encyclopedic Handbook, 2010, no. 7, 19–23 (in Russ.)

[3] Y.D. Xia, Z.X. Yang, Y.Q. Zhu, “Porous carbon-based materials for hydrogen storage: advancement and challenges”, Journal of Materials Chemistry A, 1:33 (2013), 9365–9381 | DOI

[4] R.O. Jones, “Density functional theory: Its origins, rise to prominence, and future”, Reviews of Modern Physics, 87:3 (2015), 897–923 | DOI

[5] M.R.C. Hunt, S.J. Clark, “Extraordinarily Long-Ranged Structural Relaxation in Defective Achiral Carbon Nanotubes”, Physical Review Letters, 109:26 (2012), 265502 | DOI

[6] J. Junquera, Ó. Paz, D. Sánchez-Portal, E. Artacho, “Numerical atomic orbitals for linear-scaling calculations”, Physical Review B, 64:23 (2001), 235111 | DOI

[7] K. Lee, J. Yu, Y. Morikawa, “Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals”, Physical Review B, 75:4 (2007), 045402 | DOI

[8] S.F. Boys, F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors”, Molecular Physics, 100:1 (2002), 65–73; Boys S.F., Bernardi F., “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors”, Molecular Physics, 19:4 (1970), 553–566 | DOI

[9] J.M. Soler, E. Artacho, J.D. Gale et al., “The SIESTA method for ab initio order-N materials simulation”, Journal of Physics-Condensed Matter, 14:11 (2002), 2745–2779 | DOI

[10] P. Ordejón, E.Artacho, J.M. Soler, “Self-consistent order-N density-functional calculations for very large systems”, Physical Review B, 53:16 (1996), R10441–R10444 | DOI

[11] G. Kresse, J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Physical Review B, 54:16 (1996), 11169–11186 | DOI

[12] G. Kresse, D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method”, Physical Review B, 59:3 (1999), 1758–1775 | DOI

[13] D.M. Ceperley, B.J. Alder, “Ground State of the Electron Gas by a Stochastic Method”, Physical Review Letters, 45:7 (1980), 566–569 | DOI

[14] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple”, Physical Review Letters, 77:18 (1996), 3865–3868 | DOI

[15] Abinit's Fritz-Haber-Institute (FHI) pseudo database, (accessed 25.11.2018) https://departments.icmab.es/leem/SIESTA_MATERIAL/Databases/Pseudopotentials/periodictable-intro.html

[16] E. Artacho, D. Sánchez-Portal, P. Ordejón et al., “Linear-scaling ab-initio calculations for large and complex systems”, Physica Status Solidi B, 215:1 (1999), 809–817 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] Anikina E.V., Beskachko V.P., “Basis Set Parameter Optimization for Hydrogen Adsorption on Carbon Metananotubes Simulation in SIESTA Package”, Scientific search, Proc. IX scientific conference of graduate and doctoral students, Izdatel'skiy tsentr YuUrGU, Chelyabinsk, 2017, 126–134 (in Russ.)

[18] K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, “Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals”, Critical Reviews in Solid State and Materials Sciences, 39:1 (2014), 1–24 | DOI

[19] K. Lejaeghere, G. Bihlmayer, T. Björkman et al., “Reproducibility in density functional theory calculations of solids”, Science, 351:6280 (2016), aad3000 | DOI

[20] J. Klimeš, A. Michaelides, “Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory”, The Journal of Chemical Physics, 137:12 (2012), 120901 | DOI

[21] P. Kostenetskiy, P. Semenikhina, “SUSU Supercomputer Resources for Industry and fundamental Science”, Global Smart Industry Conference (GloSIC) (Chelyabinsk, 2018), 2018, 1–7 | DOI