Mots-clés : indirect taxis, external signal production, Poincaré–Andronov–Hopf bifurcation
@article{VYURM_2019_11_3_a3,
author = {A. B. Morgulis},
title = {Stability of the quasi-equilibria of {Keller{\textendash}Segel} systems in strictly inhomogeneous environment},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {28--40},
year = {2019},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/}
}
TY - JOUR AU - A. B. Morgulis TI - Stability of the quasi-equilibria of Keller–Segel systems in strictly inhomogeneous environment JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 28 EP - 40 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/ LA - ru ID - VYURM_2019_11_3_a3 ER -
%0 Journal Article %A A. B. Morgulis %T Stability of the quasi-equilibria of Keller–Segel systems in strictly inhomogeneous environment %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 28-40 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/ %G ru %F VYURM_2019_11_3_a3
A. B. Morgulis. Stability of the quasi-equilibria of Keller–Segel systems in strictly inhomogeneous environment. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 28-40. http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/
[1] Ivanitskii G.R., Medvinskii A.B., Tsyganov M.A., “From the dynamics of population autowaves generated by living cells to neuroinformatics”, Phys. Usp., 37:10 (1994), 961–989 | DOI | DOI
[2] M.A. Tsyganov, J. Brindley, A.V. Holden, V.N. Biktashev, “Quasisoliton interaction of pursuit-evasion waves in a predator-prey system”, Physical review letters, 91:21 (2003), 218102 | DOI
[3] M.A. Tsyganov, J. Brindley, A.V. Holden, V.N. Biktashev, “Soliton-like phenomena in one-dimensional cross-diffusion systems: a predator-prey pursuit and evasion example”, Physica D: Nonlinear Phenomena, 197:1–2 (2004), 18–33 | DOI | MR | Zbl
[4] M.A. Tsyganov, V.N. Biktashev, “Half-soliton interaction of population taxis waves in predator-prey systems with pursuit and evasion”, Physical Review E, 70:3 (2004), 031901 | DOI | MR
[5] C. Li, X. Wang, Y. Shao, “Steady states of a predator-prey model with prey-taxis”, Nonlinear Analysis: Theory, Methods Applications, 97 (2014), 155–168 | DOI | MR | Zbl
[6] J.I. Tello, D. Wrzosek, “Predator-prey model with diffusion and indirect prey-taxis”, Mathematical Models and Methods in Applied Sciences, 26:11 (2016), 2129–2162 | DOI | MR | Zbl
[7] Y.V. Tyutyunov, L.I. Titova, I.N. Senina, “Prey-taxis destabilizes homogeneous stationary state in spatial Gause-Kolmogorov-type model for predator-prey system”, Ecological complexity, 31 (2017), 170–180 | DOI
[8] H. Li, Y. Tao, “Boundedness in a chemotaxis system with indirect signal production and generalized logistic source”, Applied Mathematics Letters, 77 (2018), 108–113 | DOI | MR | Zbl
[9] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, “Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues”, Mathematical Models and Methods in Applied Sciences, 25:9 (2015), 1663–1763 | DOI | MR | Zbl
[10] Govorukhin V.N., Morgulis A.B., Tyutyunov Y.V., “Slow taxis in a predator-prey model. Slow Taxis in a Predator-Prey Model”, Doklady Mathematics, 61:3, 420–422 | Zbl
[11] R. Arditi, Y. Tyutyunov, A. Morgulis et al., “Directed movement of predators and the emergence of density-dependence in predator-prey models”, Theoretical Population Biology, 59:3 (2001), 207–221 | DOI | MR | Zbl
[12] I.G. Pearce, M.A. Chaplain, P.G. Schofield et al., “Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems”, Journal of mathematical biology, 55:3 (2007), 365–388 | DOI | MR | Zbl
[13] Q. Wang, J. Yang, L. Zhang, “Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth”, Discrete Continuous Dynamical Systems - B, 22:9 (2017), 3547–3574 | DOI | MR | Zbl
[14] T. Black, “Boundedness in a Keller-Segel system with external signal production”, Journal of Mathematical Analysis and Applications, 446:1 (2017), 436–455 | DOI | MR | Zbl
[15] B.P. Yurk, C.A. Cobbold, “Homogenization techniques for population dynamics in strongly heterogeneous landscapes”, Journal of biological dynamics, 12:1 (2018), 171–193 | DOI | MR
[16] T. Issa, W. Shen, Persistence, coexistence and extinction in two species chemotaxis models on bounded heterogeneous environments, 2018, arXiv: 1709.10040v4
[17] Yudovich V.I., “The dynamics of vibrations in systems with constraints”, Doklady Physics, 42:6 (1997), 322–325 | MR
[18] V.A. Vladimirov, “On vibrodynamics of pendulum and submerged solid”, Journal of Mathematical Fluid Mechanics, 7, Supplement 3 (2005), S397–S412 | DOI | MR | Zbl
[19] G. Allaire, “A brief introduction to homogenization and miscellaneous applications”, ESAIM: Proc., 37 (2012), 1–49 | DOI | MR | Zbl
[20] G. Allaire, “Homogenization and two-scale convergence”, SIAM Journal on Mathematical Analysis, 23:6 (1992), 1482–1518 | DOI | MR | Zbl
[21] G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences, 146, Springer, New York, NY, 2002, 456 pp. | DOI | MR | Zbl
[22] Iooss G., Joseph D.D., Elementary stability and bifurcation theory, Springer Science Business Media, 2012 | DOI | MR
[23] Arnol'd V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P., “Bifurcation theory”, Dynamical systems - 5, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 5, VINITI publ., M., 1986, 5–218 (in Russ.)
[24] M. Haragus, G. Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext, Springer, London; EDP Sciences, Les Ulis, 2011, 329 pp. | DOI | MR | Zbl
[25] L. Nirenberg, “A strong maximum principle for parabolic equations”, Communications on Pure and Applied Mathematics, 6:2 (1953), 167–177 | DOI | MR | Zbl
[26] E.M. Landis, Second Order Equations of Elliptic and Parabolic Type, Translations of Mathematical Monographs, 171, American Mathematical Society, Providence, RI, USA, 1998, 203 pp. | DOI | MR | Zbl
[27] V.A. Vladimirov, “Two-Timing Hypothesis, Distinguished Limits, Drifts, and Pseudo-Diffusion for Oscillating Flows”, Studies in Applied Mathematics, 138:3 (2017), 269–293 | DOI | MR | Zbl