Stability of the quasi-equilibria of Keller–Segel systems in strictly inhomogeneous environment
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 28-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that a local bifurcation of the equilibrium of a system of Patlak–Keller–Segels’ type (PKS) often turns out to be the first link in the chain of dynamical transitions leading to rather complex regimes of motion. However, as far as we are aware, the studies of the first transition cover only the homogeneous equilibria of homogeneous (i.e. translationally invariant) systems. In this article, we consider the effect of inhomogeneity. For this purpose, we have been introducing a PKS system, modeling two species, one of which (predator) is capable of searching the other one (prey). In addition to the prey-taxis, the predator has been endowed with taxis driven by environmental characteristics, such as temperature, salinity, terrain relief, etc. In other words, the predator can perceive an external signal. When the external signal is off, then we get a very simple homogeneous PKS-type system, which is, nevertheless, capable of transiting from the homogeneous equilibrium to self-oscillatory wave motions via a local bifurcation. Notably, this transition does not involve the predator's kinetics, but the taxis only. We have been examining the short wavelength signals using the homogenization technique. It turns out that a short wavelength signal typically causes an exponential reduction of the predators' motility in comparison with the homogeneous system in response to the increase in the external signal level. The loss of motility to a great extent prevents the occurrence of the waves and dramatically stabilizes the primitive quasi-equilibria fully imposed by the external signal. It can be said that intense small-scale environmental fluctuations disorient and distract predators, and prevent them from effectively pursuing their prey.
Keywords: Patlak–Keller–Segel systems, prey-taxis, stability, instability, averaging, homogenization.
Mots-clés : indirect taxis, external signal production, Poincaré–Andronov–Hopf bifurcation
@article{VYURM_2019_11_3_a3,
     author = {A. B. Morgulis},
     title = {Stability of the quasi-equilibria of {Keller{\textendash}Segel} systems in strictly inhomogeneous environment},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {28--40},
     year = {2019},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/}
}
TY  - JOUR
AU  - A. B. Morgulis
TI  - Stability of the quasi-equilibria of Keller–Segel systems in strictly inhomogeneous environment
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 28
EP  - 40
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/
LA  - ru
ID  - VYURM_2019_11_3_a3
ER  - 
%0 Journal Article
%A A. B. Morgulis
%T Stability of the quasi-equilibria of Keller–Segel systems in strictly inhomogeneous environment
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 28-40
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/
%G ru
%F VYURM_2019_11_3_a3
A. B. Morgulis. Stability of the quasi-equilibria of Keller–Segel systems in strictly inhomogeneous environment. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 28-40. http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a3/

[1] Ivanitskii G.R., Medvinskii A.B., Tsyganov M.A., “From the dynamics of population autowaves generated by living cells to neuroinformatics”, Phys. Usp., 37:10 (1994), 961–989 | DOI | DOI

[2] M.A. Tsyganov, J. Brindley, A.V. Holden, V.N. Biktashev, “Quasisoliton interaction of pursuit-evasion waves in a predator-prey system”, Physical review letters, 91:21 (2003), 218102 | DOI

[3] M.A. Tsyganov, J. Brindley, A.V. Holden, V.N. Biktashev, “Soliton-like phenomena in one-dimensional cross-diffusion systems: a predator-prey pursuit and evasion example”, Physica D: Nonlinear Phenomena, 197:1–2 (2004), 18–33 | DOI | MR | Zbl

[4] M.A. Tsyganov, V.N. Biktashev, “Half-soliton interaction of population taxis waves in predator-prey systems with pursuit and evasion”, Physical Review E, 70:3 (2004), 031901 | DOI | MR

[5] C. Li, X. Wang, Y. Shao, “Steady states of a predator-prey model with prey-taxis”, Nonlinear Analysis: Theory, Methods Applications, 97 (2014), 155–168 | DOI | MR | Zbl

[6] J.I. Tello, D. Wrzosek, “Predator-prey model with diffusion and indirect prey-taxis”, Mathematical Models and Methods in Applied Sciences, 26:11 (2016), 2129–2162 | DOI | MR | Zbl

[7] Y.V. Tyutyunov, L.I. Titova, I.N. Senina, “Prey-taxis destabilizes homogeneous stationary state in spatial Gause-Kolmogorov-type model for predator-prey system”, Ecological complexity, 31 (2017), 170–180 | DOI

[8] H. Li, Y. Tao, “Boundedness in a chemotaxis system with indirect signal production and generalized logistic source”, Applied Mathematics Letters, 77 (2018), 108–113 | DOI | MR | Zbl

[9] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, “Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues”, Mathematical Models and Methods in Applied Sciences, 25:9 (2015), 1663–1763 | DOI | MR | Zbl

[10] Govorukhin V.N., Morgulis A.B., Tyutyunov Y.V., “Slow taxis in a predator-prey model. Slow Taxis in a Predator-Prey Model”, Doklady Mathematics, 61:3, 420–422 | Zbl

[11] R. Arditi, Y. Tyutyunov, A. Morgulis et al., “Directed movement of predators and the emergence of density-dependence in predator-prey models”, Theoretical Population Biology, 59:3 (2001), 207–221 | DOI | MR | Zbl

[12] I.G. Pearce, M.A. Chaplain, P.G. Schofield et al., “Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems”, Journal of mathematical biology, 55:3 (2007), 365–388 | DOI | MR | Zbl

[13] Q. Wang, J. Yang, L. Zhang, “Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth”, Discrete Continuous Dynamical Systems - B, 22:9 (2017), 3547–3574 | DOI | MR | Zbl

[14] T. Black, “Boundedness in a Keller-Segel system with external signal production”, Journal of Mathematical Analysis and Applications, 446:1 (2017), 436–455 | DOI | MR | Zbl

[15] B.P. Yurk, C.A. Cobbold, “Homogenization techniques for population dynamics in strongly heterogeneous landscapes”, Journal of biological dynamics, 12:1 (2018), 171–193 | DOI | MR

[16] T. Issa, W. Shen, Persistence, coexistence and extinction in two species chemotaxis models on bounded heterogeneous environments, 2018, arXiv: 1709.10040v4

[17] Yudovich V.I., “The dynamics of vibrations in systems with constraints”, Doklady Physics, 42:6 (1997), 322–325 | MR

[18] V.A. Vladimirov, “On vibrodynamics of pendulum and submerged solid”, Journal of Mathematical Fluid Mechanics, 7, Supplement 3 (2005), S397–S412 | DOI | MR | Zbl

[19] G. Allaire, “A brief introduction to homogenization and miscellaneous applications”, ESAIM: Proc., 37 (2012), 1–49 | DOI | MR | Zbl

[20] G. Allaire, “Homogenization and two-scale convergence”, SIAM Journal on Mathematical Analysis, 23:6 (1992), 1482–1518 | DOI | MR | Zbl

[21] G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences, 146, Springer, New York, NY, 2002, 456 pp. | DOI | MR | Zbl

[22] Iooss G., Joseph D.D., Elementary stability and bifurcation theory, Springer Science Business Media, 2012 | DOI | MR

[23] Arnol'd V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P., “Bifurcation theory”, Dynamical systems - 5, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 5, VINITI publ., M., 1986, 5–218 (in Russ.)

[24] M. Haragus, G. Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext, Springer, London; EDP Sciences, Les Ulis, 2011, 329 pp. | DOI | MR | Zbl

[25] L. Nirenberg, “A strong maximum principle for parabolic equations”, Communications on Pure and Applied Mathematics, 6:2 (1953), 167–177 | DOI | MR | Zbl

[26] E.M. Landis, Second Order Equations of Elliptic and Parabolic Type, Translations of Mathematical Monographs, 171, American Mathematical Society, Providence, RI, USA, 1998, 203 pp. | DOI | MR | Zbl

[27] V.A. Vladimirov, “Two-Timing Hypothesis, Distinguished Limits, Drifts, and Pseudo-Diffusion for Oscillating Flows”, Studies in Applied Mathematics, 138:3 (2017), 269–293 | DOI | MR | Zbl