Keywords: mixing energy, chromium, short-range order.
@article{VYURM_2019_11_2_a6,
author = {G. D. Bairova and A. A. Mirzoev},
title = {Short-range order in {Fe-Cr} alloys: simulation by the lattice {Monte} {Carlo} method},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {51--57},
year = {2019},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/}
}
TY - JOUR AU - G. D. Bairova AU - A. A. Mirzoev TI - Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 51 EP - 57 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/ LA - ru ID - VYURM_2019_11_2_a6 ER -
%0 Journal Article %A G. D. Bairova %A A. A. Mirzoev %T Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 51-57 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/ %G ru %F VYURM_2019_11_2_a6
G. D. Bairova; A. A. Mirzoev. Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 51-57. http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/
[1] F.A. Garner, M.B. Toloczko, B.H. Sence, “Comparison of swelling and irradiation creep behavior of FCC-austenitic and BCC-ferritic/martensitic alloys at high neutron exposure”, Journal of Nuclear Materials, 276:1–3 (2000), 123–142 | DOI
[2] N. Saunders, A.P. Miodownik, “Thermodynamic Models for Solution and Compound Phases”, CALPHAD, Calculation of Phase Diagrams, A Comprehensive Guide, Pergamon Materials Series, 1, Elsevier Science Ltd, 1998, 92 | DOI
[3] I. Mirebeau, M. Hennion, G. Parette, “First measurement of short-range-order inversion as a function of concentration in a transition alloy”, Phys. Rev. Lett., 53:7 (1984), 687–690 | DOI
[4] I. Mirebeau, G. Parette, “Neutron study of the short range order inversion in Fe$_{1-x}$Cr$_x$”, Phys. Rev. B, 82:10 (2010), 104203 | DOI
[5] P. Olsson, I.A. Abrikosov, J. Wallenius, “Electronic origin of the anomalous stability of Fe-rich bcc Fe-Cr alloys”, Phys. Rev. B, 73:10 (2006), 104416 | DOI
[6] Mirzoev A.A., Yalalov M.M., Mirzaev D.A., “Calculation of the energy of mixing for the Fe-Cr alloys by the first-principles methods of computer simulation”, The Physics of Metals and Metallography, 97:4 (2004), 336–341 | DOI | MR
[7] T.P.C. Klaver, R. Drautz, M.W. Finnis, “Magnetism and thermodynamics of defect-free Fe-Cr alloys”, Phys. Rev., 74:9 (2006), 094435 | DOI
[8] K. Henriksson, C. Bjorkas, K. Nordlund, “Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system”, Journal of Physics: Condensed Matter, 25:44 (2013), 445401 | DOI
[9] G.L. Krasko, B. Rice, S. Yip, “A bond-order potential for atomistic simulations in iron”, Journal of Computer-Aided Materials Design, 6:2–3 (1999), 129–136 | DOI
[10] Iveronova V.I., Katsnel'son A.A., Nearing order in solid solutions, Nauka Publ., M., 1977, 255 pp. (in Russ.)
[11] Silonov V.M., Radioelektronika. Nanosistemy. Informatsionnye tekhnologii, 3:1 (2011), 34–46 (in Russ.)
[12] L.D. Fosdick, “Calculation of order parameters in a binary alloy by the Monte Carlo Method”, Phys. Rev., 116:3 (1959), 565–573 | DOI | MR
[13] P.A. Flinn, G.M. McManus, “Monte Carlo calculation of the order-disorder transformation in the body-centered cubic lattice”, Phys. Rev., 124:1 (1961), 54–59 | DOI | MR
[14] Mirzoev A.A., Smolin N.A., Gel'chinskiy B.R., “A new method for modeling the structure of the nearing order of binary disordered systems in the framework of the tight coupling method”, Izvestiya Chelyabinskogo nauchnogo tsentra, 1998, no. 2, 21–26 (in Russ.)