Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 51-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Short-range order in Fe-Cr alloys was studied by the Monte Carlo method. The simulation was carried out in the framework of the Metropolis algorithm in LAMMPS software package. Simulation data analysis was carried out using Ovito data visualization and analysis software. The alloy model assumes that the lattice structure is fixed and that interactions exist between the first neighbors and the second neighbors. The FeCr interaction was determined using the Abell-Brenner-Tersoff interatomic interaction potential (ABOP). Various admixture concentrations of chromium interstitial in iron have been studied, namely, 5-50 at. %. The mixing energy of the Fe-Cr system was calculated for various concentrations of interstitial impurities. Calculations showed that the chosen interaction potential correctly simulates changes in the sign of the mixing energy as a function of Cr concentration. When used in Monte Carlo kinetic modeling, the potential correctly predicts decomposition of initially random Fe-Cr alloys, depending on Cr concentration. The Cowley short-range order parameter, which is used for quantitative assessment of the degree of order, has been determined. According to experiments, there is a strong tendency of ordering in distribution of Cr at low concentrations, which becomes evident in negative values of the short-range order parameters.
Mots-clés : solid solutions, Monte Carlo simulation
Keywords: mixing energy, chromium, short-range order.
@article{VYURM_2019_11_2_a6,
     author = {G. D. Bairova and A. A. Mirzoev},
     title = {Short-range order in {Fe-Cr} alloys: simulation by the lattice {Monte} {Carlo} method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {51--57},
     year = {2019},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/}
}
TY  - JOUR
AU  - G. D. Bairova
AU  - A. A. Mirzoev
TI  - Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 51
EP  - 57
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/
LA  - ru
ID  - VYURM_2019_11_2_a6
ER  - 
%0 Journal Article
%A G. D. Bairova
%A A. A. Mirzoev
%T Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 51-57
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/
%G ru
%F VYURM_2019_11_2_a6
G. D. Bairova; A. A. Mirzoev. Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 51-57. http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a6/

[1] F.A. Garner, M.B. Toloczko, B.H. Sence, “Comparison of swelling and irradiation creep behavior of FCC-austenitic and BCC-ferritic/martensitic alloys at high neutron exposure”, Journal of Nuclear Materials, 276:1–3 (2000), 123–142 | DOI

[2] N. Saunders, A.P. Miodownik, “Thermodynamic Models for Solution and Compound Phases”, CALPHAD, Calculation of Phase Diagrams, A Comprehensive Guide, Pergamon Materials Series, 1, Elsevier Science Ltd, 1998, 92 | DOI

[3] I. Mirebeau, M. Hennion, G. Parette, “First measurement of short-range-order inversion as a function of concentration in a transition alloy”, Phys. Rev. Lett., 53:7 (1984), 687–690 | DOI

[4] I. Mirebeau, G. Parette, “Neutron study of the short range order inversion in Fe$_{1-x}$Cr$_x$”, Phys. Rev. B, 82:10 (2010), 104203 | DOI

[5] P. Olsson, I.A. Abrikosov, J. Wallenius, “Electronic origin of the anomalous stability of Fe-rich bcc Fe-Cr alloys”, Phys. Rev. B, 73:10 (2006), 104416 | DOI

[6] Mirzoev A.A., Yalalov M.M., Mirzaev D.A., “Calculation of the energy of mixing for the Fe-Cr alloys by the first-principles methods of computer simulation”, The Physics of Metals and Metallography, 97:4 (2004), 336–341 | DOI | MR

[7] T.P.C. Klaver, R. Drautz, M.W. Finnis, “Magnetism and thermodynamics of defect-free Fe-Cr alloys”, Phys. Rev., 74:9 (2006), 094435 | DOI

[8] K. Henriksson, C. Bjorkas, K. Nordlund, “Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system”, Journal of Physics: Condensed Matter, 25:44 (2013), 445401 | DOI

[9] G.L. Krasko, B. Rice, S. Yip, “A bond-order potential for atomistic simulations in iron”, Journal of Computer-Aided Materials Design, 6:2–3 (1999), 129–136 | DOI

[10] Iveronova V.I., Katsnel'son A.A., Nearing order in solid solutions, Nauka Publ., M., 1977, 255 pp. (in Russ.)

[11] Silonov V.M., Radioelektronika. Nanosistemy. Informatsionnye tekhnologii, 3:1 (2011), 34–46 (in Russ.)

[12] L.D. Fosdick, “Calculation of order parameters in a binary alloy by the Monte Carlo Method”, Phys. Rev., 116:3 (1959), 565–573 | DOI | MR

[13] P.A. Flinn, G.M. McManus, “Monte Carlo calculation of the order-disorder transformation in the body-centered cubic lattice”, Phys. Rev., 124:1 (1961), 54–59 | DOI | MR

[14] Mirzoev A.A., Smolin N.A., Gel'chinskiy B.R., “A new method for modeling the structure of the nearing order of binary disordered systems in the framework of the tight coupling method”, Izvestiya Chelyabinskogo nauchnogo tsentra, 1998, no. 2, 21–26 (in Russ.)