Importance of atomic-like basis set optimization for DFT modelling of nanomaterials
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 44-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Atomic-like orbital basis sets allow efficient calculation of nanomaterial’s surface properties within the density functional theory. However, unlike plane wave basis sets, they require thorough optimization on a reference system before modelling systems of interest. We considered the basis set optimization procedure for several structures: bulk tantalum carbide, oxygen molecule, bulk lithium, and $\alpha$-carbyne. We showed that during the optimization procedure not only the total energy of a reference system should be monitored but other physical characteristics (bond length and atomic charges) too. Moreover, optimal basis parameters could not correspond to the minimum total energy of a reference system to get the correct physical properties. We obtained optimal orbital parameters, which can be used for modelling of the following systems: oxygen adsorption on tantalum carbide surface, and Li-functionalized carbyne. Considering oxygen adsorption on TaC surface and Li-functionalization of carbyne, we also demonstrated that the basis set optimization influences binding energies and atomic charges of an adsorbent and a surface.
Keywords: Density functional theory, atomic-like basis set, projector-augmentedwave method
Mots-clés : adsorption.
@article{VYURM_2019_11_2_a5,
     author = {E. V. Anikina and I. A. Balyakin and V. P. Beskachko},
     title = {Importance of atomic-like basis set optimization for {DFT} modelling of nanomaterials},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {44--50},
     year = {2019},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a5/}
}
TY  - JOUR
AU  - E. V. Anikina
AU  - I. A. Balyakin
AU  - V. P. Beskachko
TI  - Importance of atomic-like basis set optimization for DFT modelling of nanomaterials
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 44
EP  - 50
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a5/
LA  - en
ID  - VYURM_2019_11_2_a5
ER  - 
%0 Journal Article
%A E. V. Anikina
%A I. A. Balyakin
%A V. P. Beskachko
%T Importance of atomic-like basis set optimization for DFT modelling of nanomaterials
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 44-50
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a5/
%G en
%F VYURM_2019_11_2_a5
E. V. Anikina; I. A. Balyakin; V. P. Beskachko. Importance of atomic-like basis set optimization for DFT modelling of nanomaterials. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 44-50. http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a5/

[1] R.O. Jones, “Density functional theory: Its origins, rise to prominence, and future”, Reviews of Modern Physics, 87:3 (2015), 897–923 | DOI | MR

[2] S. Haastrup, M. Strange, M. Pandey et al., “The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals”, 2D Materials, 5:4 (2018), 36 pp. | DOI

[3] Bazhanova Z.G., Roizen V.V., Oganov A.R., “High-pressure behavior of the Fe-S system and composition of the Earth's inner core”, Physics-Uspekhi, 60:10 (2017), 1025–1032 | DOI | DOI

[4] M.C. Payne, M.P. Teter, D.C. Allan et al., “Iterative minimization techniques for ab initio total-energy calculations – molecular-dynamics and conjugate gradients”, Reviews of Modern Physics, 64:4 (1992), 1045–1097 | DOI

[5] J. Junquera, O. Paz, D. Sanchez-Portal et al., “Numerical atomic orbitals for linear-scaling calculations”, Physical Review B, 64:23 (2001), 9 | DOI

[6] A.S. Kurlov, A.I. Gusev, Tungsten Carbides: Structure, Properties and Application in Hardmetals, Springer, Cham–Heidelberg–NY, 2013, 242 pp. | DOI

[7] J.M. Soler, E. Artacho, J.D. Gale et al., “The SIESTA method for ab initio order-N materials simulation”, Journal of Physics: Condensed Matter, 14:11 (2002), 2745 | DOI

[8] P. Ordejon, E. Artacho, J.M. Soler, “Self-consistent order-N density-functional calculations for very large systems”, Physical Review B, 53:16 (1996), 10441–10444 | DOI

[9] G. Kresse, J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Physical Review B, 54:16 (1996), 11169–11186 | DOI

[10] G. Kresse, D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method”, Physical Review B, 59:3 (1999), 1758–1775 | DOI

[11] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple”, Physical Review Letters, 77:18 (1996), 3865–3868 | DOI

[12] E. Artacho, D. Sanchez-Portal, P. Ordejon et al., “Linear-scaling ab-initio calculations for large and complex systems”, Physica Status Solidi B, 215:1 (1999), 809–817 | 3.0.co;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] P. Rivero, V.M. Garcia-Suarez, D. Pereniguez et al., “Systematic pseudopotentials from reference eigenvalue sets for DFT calculations: Pseudopotential files”, Data in Brief, 3 (2015), 21–23 | DOI

[14] Abinit's Fritz-Haber-Institute (FHI) pseudo database, , 2018 (accessed 25.11.2018) http://departments.icmab.es/leem/siesta/Databases/Pseudopotentials/periodictable-intro.html

[15] V.I. Kasatochkin, V.V. Korshak, Y.P. Kudryavtsev et al., “Crystalline-structure of carbine”, Carbon, 11:1 (1973), 70–72 | DOI

[16] E. Anglada, J.M. Soler, J. Junquera et al., “Systematic generation of finite-range atomic basis sets for linear-scaling calculations”, Physical Review B, 66:20 (2002), 4 pp. | DOI

[17] S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction”, Journal of Computational Chemistry, 27:15 (2006), 1787–1799 | DOI

[18] G. Henkelman, A. Arnaldsson, H. Jonsson, “A fast and robust algorithm for Bader decomposition of charge density”, Computational Materials Science, 36:3 (2006), 354–360 | DOI