Keywords: low-rank approximation, linear programming, algorithm, computational complexity.
@article{VYURM_2018_10_2_a2,
author = {A. V. Panyukov and Kh. Z. Chaloob and Ya. A. Mezaal},
title = {Approximation of the matrix with positive elements by the single rank matrix},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {28--36},
year = {2018},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a2/}
}
TY - JOUR AU - A. V. Panyukov AU - Kh. Z. Chaloob AU - Ya. A. Mezaal TI - Approximation of the matrix with positive elements by the single rank matrix JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 28 EP - 36 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a2/ LA - ru ID - VYURM_2018_10_2_a2 ER -
%0 Journal Article %A A. V. Panyukov %A Kh. Z. Chaloob %A Ya. A. Mezaal %T Approximation of the matrix with positive elements by the single rank matrix %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 28-36 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a2/ %G ru %F VYURM_2018_10_2_a2
A. V. Panyukov; Kh. Z. Chaloob; Ya. A. Mezaal. Approximation of the matrix with positive elements by the single rank matrix. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 2, pp. 28-36. http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a2/
[1] E.E. Tyrtyshnikov, “Mosaic-skeleton approximations”, Calcolo, 33:1 (1996), 47–57 | DOI | MR | Zbl
[2] I.V. Oseledets, A.Yu. Mikhalev, “Representation of quasi separable matrices using excluded sums and equivalent charges”, Linear Algebra Appl., 436:3 (2012), 699–708 | DOI | MR | Zbl
[3] M. Bebendorf, “Why finite element discretizations can be factored by triangular hierarchical matrices”, SIAM J. Numer. Anal., 45:4 (2007), 1472–1494 | DOI | MR | Zbl
[4] S. Börm, “Approximation of solution operators of elliptic partial differential equations by-and-matrices”, Numerische Mathematik, 115:2 (2010), 165–193 | DOI | MR | Zbl
[5] M. Bebendorf, W. Hackbusch, “Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L$_\infty$-coefficients”, Numer. Math., 95:1 (2003), 1–28 | DOI | MR | Zbl
[6] D.A. Sushnikova, I.V. Oseledets, “Preconditioners for hierarchical matrices based on their extended sparse form”, Russian Journal of Numerical Analysis and Mathematical Modelling, 31 (2016), 29–40 | DOI | MR | Zbl
[7] G.V. Ryzhakov, A.Y. Mikhalev, D.A. Sushnikova, I.V. Oseledets, “Numerical solution of diffraction problems using large matrix compression”, 9th European Conference on Antennas and Propagation (EuCAP), 2015, 1–3
[8] J.M. Ford, I.V. Oseledets, E.E. Tyrtyshnikov, “Matrix approximations and solvers using tensor products and non-standard wavelet transforms related to irregular grids”, Rus. J. Numer. Anal. and Math. Modelling, 19:2 (2004), 185–204 | DOI | MR | Zbl
[9] Oseledets I. V., Savost'yanov D. V., Stavtsev S. L., “The use of non-linear approximation method to quickly solve the problem of sound propagation in shallow water”, Methods and technologies for solving large problems, A collection of scientific papers, IVM RAN Publ., 2004, 171–192 (in Russ.)
[10] Bashurov V. V., Buruchenko S. K., “Lagrangian computation of high velocity deep penetration”, Matem. Mod., 4:9 (1992), 37–42 (in Russ.)
[11] Ushakov A. L., “Fast Solution of the Model Problem for Poisson's Equation”, Bulletin of the South Ural State University. Series of “Mathematics. Mechanics. Physics”, 9:4 (2017), 36–42 (in Russ.)
[12] Sushnikova D. A., “Application of block low-rank matrices in Gaussian processes for regression”, Vychisl. Metody Programm., 18 (2017), 214–220 (in Russ.)
[13] A.V. Panyukov, V.A. Teleghin, “Forming of Discrete Mechanical Assembly Production Program”, Journal of Computational and Engineering Mathematics, 2015, no. 2, 57–64 | DOI | Zbl
[14] A.V. Panyukov, A.K. Bogushov, “The Spectral Statistical Method for Determining the Location Parameters of a Dipole Source of Electromagnetic Radiation”, Radiophysics and Quantum Electronics, 59 (2016), 278–288 | DOI
[15] Panyukov A. V., Tyrsin A. N., “Interrelation of weighted and generalized variants of the method of least moduli”, Izvestiya Chelyabinskogo nauchnogo tsentra, 2007, no. 1(35), 6–11 (in Russ.)
[16] A.V. Panyukov, I.A. Tetin, Ya.A. Mezal, “Linkage between wlad and glad and its applications for autoregressive analysis”, Proceedings of the 4th International Conference “Information Technologies for Intelligent Decision Making Support (ITIDS'2016)”, 2016, 224–227
[17] Lakeyev A. V., Noskov S. I., “The Least Modulus Method for the Linear Regression: the Number of Zero Approximation”, Modern Technologies System Analysis Modeling, 2012, no. 2, 48–50 (in Russ.)
[18] Yemelichev V. A., Kovalev M. M., Kravtsov M. K., Lawden G., Polytopes, graphs and optimization, Cambridge University Press, NY, USA, 1986, 344 pp. | MR